scholarly journals Sine-cosine wavelet operational matrix of fractional order integration and its applications in solving the fractional order Riccati differential equations

2017 ◽  
Vol 2017 (1) ◽  
Author(s):  
Yanxin Wang ◽  
Tianhe Yin ◽  
Li Zhu
2019 ◽  
Vol 28 (14) ◽  
pp. 1950247 ◽  
Author(s):  
Sadiye Nergis Tural-Polat

In this paper, we derive the numerical solutions of the various fractional-order Riccati type differential equations using the third-kind Chebyshev wavelet operational matrix of fractional order integration (C3WOMFI) method. The operational matrix of fractional order integration method converts the fractional differential equations to a system of algebraic equations. The third-kind Chebyshev wavelet method provides sparse coefficient matrices, therefore the computational load involved for this method is not as severe and also the resulting method is faster. The numerical solutions agree with the exact solutions for non-fractional orders, and also the solutions for the fractional orders approach those of the integer orders as the fractional order coefficient [Formula: see text] approaches to 1.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
S. Balaji

A Legendre wavelet operational matrix method (LWM) is presented for the solution of nonlinear fractional-order Riccati differential equations, having variety of applications in quantum chemistry and quantum mechanics. The fractional-order Riccati differential equations converted into a system of algebraic equations using Legendre wavelet operational matrix. Solutions given by the proposed scheme are more accurate and reliable and they are compared with recently developed numerical, analytical, and stochastic approaches. Comparison shows that the proposed LWM approach has a greater performance and less computational effort for getting accurate solutions. Further existence and uniqueness of the proposed problem are given and moreover the condition of convergence is verified.


Author(s):  
Khalid K. Ali ◽  
Mohamed A. Abd El salam ◽  
Emad M. H. Mohamed

AbstractIn this paper, a numerical technique for a general form of nonlinear fractional-order differential equations with a linear functional argument using Chebyshev series is presented. The proposed equation with its linear functional argument represents a general form of delay and advanced nonlinear fractional-order differential equations. The spectral collocation method is extended to study this problem as a discretization scheme, where the fractional derivatives are defined in the Caputo sense. The collocation method transforms the given equation and conditions to algebraic nonlinear systems of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. A general form of the operational matrix to derivatives includes the fractional-order derivatives and the operational matrix of an ordinary derivative as a special case. To the best of our knowledge, there is no other work discussed this point. Numerical examples are given, and the obtained results show that the proposed method is very effective and convenient.


2021 ◽  
Vol 5 (3) ◽  
pp. 70
Author(s):  
Esmail Bargamadi ◽  
Leila Torkzadeh ◽  
Kazem Nouri ◽  
Amin Jajarmi

In this paper, by means of the second Chebyshev wavelet and its operational matrix, we solve a system of fractional-order Volterra–Fredholm integro-differential equations with weakly singular kernels. We estimate the functions by using the wavelet basis and then obtain the approximate solutions from the algebraic system corresponding to the main system. Moreover, the implementation of our scheme is presented, and the error bounds of approximations are analyzed. Finally, we evaluate the efficiency of the method through a numerical example.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1755
Author(s):  
M. S. Al-Sharif ◽  
A. I. Ahmed ◽  
M. S. Salim

Fractional differential equations have been applied to model physical and engineering processes in many fields of science and engineering. This paper adopts the fractional-order Chelyshkov functions (FCHFs) for solving the fractional differential equations. The operational matrices of fractional integral and product for FCHFs are derived. These matrices, together with the spectral collocation method, are used to reduce the fractional differential equation into a system of algebraic equations. The error estimation of the presented method is also studied. Furthermore, numerical examples and comparison with existing results are given to demonstrate the accuracy and applicability of the presented method.


2018 ◽  
Vol 13 (8) ◽  
Author(s):  
F. Mohammadi ◽  
J. A. Tenreiro Machado

This paper compares the performance of Legendre wavelets (LWs) with integer and noninteger orders for solving fractional nonlinear Fredholm integro-differential equations (FNFIDEs). The generalized fractional-order Legendre wavelets (FLWs) are formulated and the operational matrix of fractional derivative in the Caputo sense is obtained. Based on the FLWs, the operational matrix and the Tau method an efficient algorithm is developed for FNFIDEs. The FLWs basis leads to more efficient and accurate solutions of the FNFIDE than the integer-order Legendre wavelets. Numerical examples confirm the superior accuracy of the proposed method.


2018 ◽  
Vol 36 (4) ◽  
pp. 33-54 ◽  
Author(s):  
Kourosh Parand ◽  
Mehdi Delkhosh

In this paper, a new approximate method for solving of systems of nonlinear Volterra integro-differential equations of arbitrary (integer and fractional) order is introduced. For this purpose, the generalized fractional order of the Chebyshev orthogonal functions (GFCFs) based on the classical Chebyshev polynomials of the first kind has been introduced that can be used to obtain the solution of the integro-differential equations (IDEs). Also, we construct the fractional derivative operational matrix of order $\alpha$ in the Caputo's definition for GFCFs. This method reduced a system of IDEs by collocation method into a system of algebraic equations. Some examples to illustrate the simplicity and the effectiveness of the propose method have been presented.


Sign in / Sign up

Export Citation Format

Share Document