Assessment of URANS surface effect ship models for calm water and head waves

2017 ◽  
Vol 67 ◽  
pp. 248-262 ◽  
Author(s):  
Shanti Bhushan ◽  
Maysam Mousaviraad ◽  
Frederick Stern
1981 ◽  
Vol 25 (01) ◽  
pp. 44-61
Author(s):  
C. H. Kim ◽  
S. Tsakonas

The analysis presents a practical method for evaluating the added-mass and damping coefficients of a heaving surface-effect ship in uniform translation. The theoretical added-mass and damping coefficients and the heave response show fair agreement with the corresponding experimental values. Comparisons of the coupled aero-hydrodynamic and uncoupled analytical results with the experimental data prove that the uncoupled theory, dominant for a long time, that neglects the free-surface effects is an oversimplified procedure. The analysis also provides means of estimating the wave elevation of the free surface, the escape area at the stern and the volume which are induced by a heaving surface-effect ship in uniform translation in otherwise calm water. Computational procedures have been programmed in the FORTRAN IV language and adapted to the PDP-10 high-speed digital computer.


2009 ◽  
Author(s):  
Kevin J Maki ◽  
◽  
Lawrence J Doctors ◽  
Riccardo Broglia ◽  
Andrea Di Mascio ◽  
...  

2013 ◽  
Vol 29 (02) ◽  
pp. 66-75
Author(s):  
Chris B. McKesson ◽  
Lawrence J. Doctors

In the case of conventional (displacement) hulls, model testing is based on the assumption (with or without certain refinements) that the total resistance can be expressed as:RT=RF+RR(1)where Rt is measured in the towing tank, and the frictional resistance, Rf, can be accurately estimated by the application of a friction line and the use of the calm-water wetted surface. It is assumed that the dimensionless residuary resistance RR is the same for the model and the prototype vessel. Our article may be considered to be an extension of the classic article by Wilson, Wells, and Heber (1978) to the more complex case of the surface-effect ship, as follows. Specifically, we opine that:RT=RF+RW+RH+RS+RM+RSPRAY(2)Here, Rw is the wave resistance of the vessel (caused by a combination of the actions of the cushion pressure and the two sidehulls), RH is the transom (hydrostatic) drag, Rs is the seal drag, Rm is the momentum drag, and RspRay is the spray drag. Rt is the only one of these quantities that is measured during the model test. The other components require the use of a variety of estimates. In the article, we present specific examples of our approach as applied to a number of tests on surface-effect ship models that we have studied in recent years.


2013 ◽  
Vol 72 ◽  
pp. 375-385 ◽  
Author(s):  
Kevin J. Maki ◽  
Riccardo Broglia ◽  
Lawrence J. Doctors ◽  
Andrea Di Mascio

2013 ◽  
Vol 29 (02) ◽  
pp. 84-91
Author(s):  
Stefanos Koullias ◽  
Santiago Balestrini Robinson ◽  
Dimitri N. Mavris

The purpose of this study is to obtain insight into surface effect ship (SES) endurance without reliance on historical data as a function of geometry, displacement, and technology level. First-principle models of the resistance, structures, and propulsion system are developed and integrated to predict large SES endurance and to suggest the directions that future large SESs will take. It is found that large SESs are dominated by structural weight, which indicates the need for advanced materials and complex structures, and that advanced propulsion cycles can increase endurance by up to 33%. SES endurance is shown to be a nonlinear discontinuous function of geometry, displacement, and technology level that cannot be predicted by simplified models or assumptions.


2003 ◽  
Vol 40 (01) ◽  
pp. 42-48
Author(s):  
Chang Doo Jang ◽  
Ho Kyung Kim ◽  
Ha Cheol Song

A surface effect ship is known to be comparable to a high-speed ship. For the structural design of surface effect ships, advanced design methods are needed which can reflect the various loading conditions different from those of conventional ships. Also, minimum weight design is essential because hull weight significantly affects the lift, thrust powering and high-speed performance. This paper presents the procedure of optimum structural design and a computer program to minimize the hull weight of surface effect ships built of composite materials. By using the developed computer program, the optimum structural designs for three types of surface effect ships—built of sandwich plate only, stiffened single skin plate only, and both plates—are carried out and the efficiency of each type is investigated in terms of weight. The computer program, developed herein, successfully reduced the hull weight of surface effect ships by 15–30% compared with the original design. Numerical results of optimum structural designs are presented and discussed.


Author(s):  
Dimitrios Liarokapis ◽  
Konstantina Sfakianaki ◽  
Giannis Papantonatos ◽  
Gregory Grigoropoulos

2010 ◽  
Vol 1 (1) ◽  
pp. 3 ◽  
Author(s):  
Hiromichi Akimoto ◽  
Syozo Kubo ◽  
Makoto Kanehira

2015 ◽  
Author(s):  
Hamid Sadat-Hosseini ◽  
Serge Toxopeus ◽  
Dong Hwan Kim ◽  
Teresa Castiglione ◽  
Yugo Sanada ◽  
...  

Experiments, CFD and PF studies are performed for the KCS containership advancing at Froude number 0.26 in calm water and regular waves. The validation studies are conducted for variable wavelength and wave headings with wave slope of H/λ=1/60. CFD computations are conducted using two solvers CFDShip-Iowa and STAR-CCM+. PF studies are conducted using FATIMA. For CFD computations, calm water and head wave simulations are performed by towing the ship fixed in surge, sway, roll and yaw, but free to heave and pitch. For variable wave heading simulations, the roll motion is also free. For PF, the ship model moves at a given speed and the oscillations around 6DOF motions are computed for variable wave heading while the surge motion for head waves is restrained by adding a very large surge damping. For calm water, computations showed E<4%D for the resistance,<8%D for the sinkage, and <40%D for the trim. In head waves with variable wavelength, the errors for first harmonic variables for CFD and PF computations were small, <5%DR for amplitudes and <4%2π for phases. The errors for zeroth harmonics of motions and added resistance were large. For the added resistance, the largest error was for the peak location at λ/L=1.15 where the data also show large scatter. For variable wave heading at λ/L=1.0, the errors for first harmonic amplitudes were <17%DR for CFD and <26%DR for PF. The comparison errors for first harmonic phases were E<24%2π. The errors for the zeroth harmonic of motions and added resistance were again large. PF studies for variable wave headings were also conducted for more wavelength condition, showing good predictions for the heave and pitch motions for all cases while the surge and roll motions and added resistance were often not well predicted. Local flow studies were conducted for λ/L=1.37 to investigate the free surface profile and wake field predicted by CFD. The results showed a significant fluctuation in the wake field which can affect the propeller/engine performance. Additionally it was found that the average propeller inflow to the propeller is significantly higher in waves.


Sign in / Sign up

Export Citation Format

Share Document