Convection–radiation heat transfer in solar heat exchangers filled with a porous medium: Exact and shooting homotopy analysis solution

2016 ◽  
Vol 103 ◽  
pp. 537-542 ◽  
Author(s):  
L. Ahmad Soltani ◽  
E. Shivanian ◽  
R. Ezzati
2015 ◽  
Vol 74 ◽  
pp. 448-455 ◽  
Author(s):  
Maziar Dehghan ◽  
Yousef Rahmani ◽  
Davood Domiri Ganji ◽  
Seyfollah Saedodin ◽  
Mohammad Sadegh Valipour ◽  
...  

2013 ◽  
Vol 28 (2) ◽  
pp. 118-127
Author(s):  
Kamel Sidi-Ali ◽  
Khaled Oukil ◽  
Tinhinane Hassani ◽  
Yasmina Amri ◽  
Abdelmoumane Alem

This work analyses the contribution of radiation heat transfer in the cooling of a pebble bed modular reactor. The mathematical model, developed for a porous medium, is based on a set of equations applied to an annular geometry. Previous major works dealing with the subject have considered the forced convection mode and often did not take into account the radiation heat transfer. In this work, only free convection and radiation heat transfer are considered. This can occur during the removal of residual heat after shutdown or during an emergency situation. In order to derive the governing equations of radiation heat transfer, a steady-state in an isotropic and emissive porous medium (CO2) is considered. The obtained system of equations is written in a dimensionless form and then solved. In order to evaluate the effect of radiation heat transfer on the total heat removed, an analytical method for solving the system of equations is used. The results allow quantifying both radiation and free convection heat transfer. For the studied situation, they show that, in a pebble bed modular reactor, more than 70% of heat is removed by radiation heat transfer when CO2 is used as the coolant gas.


Author(s):  
Q. Y. Chen ◽  
M. Zeng ◽  
D. H. Zhang ◽  
Q. W. Wang

In the present paper, the compact ceramic high temperature heat exchangers with parallel offset strip fins and inclined strip fins (inclined angle β = 0∼70°) are investigated with CFD method. The numerical simulations are carried out for high temperature (1500°C), without and with radiation heat transfer, and the periodic boundary is used in transverse direction. The fluid of high temperature side is the standard flue gas. The material of heat exchanger is SiC. NuS-G.R(with surface and gaseous radiation heat transfer) is averagely higher than NuNo.R (without radiation heat transfer) by 7% and fS-G.R is averagely higher than fNo.R by 5%. NuS-G.R(with surface and gaseous radiation heat transfer) is averagely higher than NuS.R (with only surface radiation heat transfer) by 0.8% and fS-G.R is averagely higher than fS.R by 3%. The thermal properties have significantly influence on the heat transfer and pressure drop characteristics, respectively. The heat transfer performance of the ceramic heat exchanger with inclined fins (β = 30°) is the best.


Sign in / Sign up

Export Citation Format

Share Document