Thermal characteristics analysis and experimental study of the planetary roller screw mechanism

2019 ◽  
Vol 149 ◽  
pp. 1345-1358 ◽  
Author(s):  
Guan Qiao ◽  
Geng Liu ◽  
Shangjun Ma ◽  
Yawen Wang ◽  
Pin Li ◽  
...  
2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Guansheng Chen ◽  
Nanshuo Li ◽  
Huanhuan Xiang ◽  
Fan Li

It is well known that attaching fins on the tubes surfaces can enhance the heat transfer into and out from the phase change materials (PCMs). This paper presents the results of an experimental study on the thermal characteristics of finned coil latent heat storage unit (LHSU) using paraffin as the phase change material (PCM). The paraffin LHSU is a rectangular cube consists of continuous horizontal multibended tubes attached vertical fins at the pitches of 2.5, 5.0, and 7.5 mm that creates the heat transfer surface. The shell side along with the space around the tubes and fins is filled with the material RT54 allocated to store energy of water, which flows inside the tubes as heat transfer fluid (HTF). The measurement is carried out under four different water flow rates: 1.01, 1.30, 1.50, and 1.70 L/min in the charging and discharging process, respectively. The temperature of paraffin and water, charging and discharging wattage, and heat transfer coefficient are plotted in relation to the working time and water flow rate.


2021 ◽  
Vol 28 (5) ◽  
pp. 1497-1505
Author(s):  
Meng Wei ◽  
Jianlin Hu ◽  
Xiaofeng Wang ◽  
Xingliang Jiang ◽  
Ruihe Zhang ◽  
...  

Author(s):  
Xiaojun Fu ◽  
Geng Liu ◽  
Xin Li ◽  
Ma Shangjun ◽  
Qiao Guan

Abstract With the rising application of double-nut Planetary Roller Screw Mechanism (PRSM) into industry, increasing comprehensive studies are required to identify the interactions among motion, forces and deformations of the mechanism. A dynamic model of the double-nut PRSM with considering elastic deformations is proposed in this paper. As preloads, inertial forces and elastic deformations have a great influence on the load distribution among threads, the double-nut PRSM is discretized into a spring-mass system. An adjacency matrix is introduced, which relates the elastic displacements of nodes and the deformations of elements in the spring-mass system. Then, the compressive force acting on the spacer is derived and the equations of load distribution are given. Considering both the equilibrium of forces and the compatibility of deformations, nonlinear equations of motion for the double-nut PRSM are developed. The effectiveness of the proposed model is verified by comparing dynamic characteristics and the load distribution among threads with those from the previously published models. Then, the dynamic analysis of a double-nut PRSM is carried out, when the rotational speed of the screw and the external force acting on the nut #2 are changed periodically. The results show that if the external force is increased, the preload of the nut #1 is decreased and that of the nut #2 is increased. Although the nominal radii of rollers are the same, the maximum contact force acting on the roller #2 is much larger than that of the roller #1.


2009 ◽  
Vol 36 (4) ◽  
pp. 799-803 ◽  
Author(s):  
武斌 Wu Bin ◽  
李毅 Li Yi ◽  
胡双双 Hu Shuangshuang ◽  
蒋群杰 Jiang Qunjie ◽  
王海方 Wang Haifang

2017 ◽  
Vol 38 (7) ◽  
pp. 891-896
Author(s):  
张晓磊 ZHANG Xiao-lei ◽  
薄报学 BO Bao-xue ◽  
张哲铭 ZHANG Zhe-ming ◽  
顾华欣 GU Hua-xin ◽  
刘力宁 LIU Li-ning ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document