Experimental Study on Thermal Characteristics of Finned Coil LHSU Using Paraffin as Phase Change Material

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Guansheng Chen ◽  
Nanshuo Li ◽  
Huanhuan Xiang ◽  
Fan Li

It is well known that attaching fins on the tubes surfaces can enhance the heat transfer into and out from the phase change materials (PCMs). This paper presents the results of an experimental study on the thermal characteristics of finned coil latent heat storage unit (LHSU) using paraffin as the phase change material (PCM). The paraffin LHSU is a rectangular cube consists of continuous horizontal multibended tubes attached vertical fins at the pitches of 2.5, 5.0, and 7.5 mm that creates the heat transfer surface. The shell side along with the space around the tubes and fins is filled with the material RT54 allocated to store energy of water, which flows inside the tubes as heat transfer fluid (HTF). The measurement is carried out under four different water flow rates: 1.01, 1.30, 1.50, and 1.70 L/min in the charging and discharging process, respectively. The temperature of paraffin and water, charging and discharging wattage, and heat transfer coefficient are plotted in relation to the working time and water flow rate.

Author(s):  
M Khamis Mansour

This article presents numerical and experimental simulation of three-dimensional conjugate heat transfer problem in mini-scaled thermal storage system. The conjugate problem includes melting process of phase change material in the presence of natural convection during laminar flow of heat transfer fluid through circular minichannel. The paraffin wax is used as a phase change material while the water is used as a heat transfer fluid. The main objective of this study is to investigate the effect of the phase change material natural convection during the melting process on the heat transfer fluid thermal characteristics as well as the impact of the natural convection on the melting performance itself. The thermal characteristics are represented by local Nusselt number ( Nu) and local surface temperature. The melting performance is evaluated by fusion time and liquid fraction profile. Two inlet temperatures and velocities of the heat transfer fluid are adopted to highlight the effect of the natural convection. Combination of the inlet temperatures and velocities of the heat transfer fluid forms four cases: case_1 (at [Formula: see text] = 353 °K, [Formula: see text] = 1 m/s), case_2 (at [Formula: see text] = 453 °K, [Formula: see text] = 1 m/s), case_3 (at [Formula: see text] = 353 °K, [Formula: see text] = 0.1 m/s), and case_4 (at [Formula: see text] = 453 °K, [Formula: see text] = 0.1 m/s). Experimental test rig was constructed to verify the computational results and good agreement between both results was achieved. The study shows that the heat transfer fluid encounters an erratic thermal behavior during the phase change material melting process. For example, the local surface temperature experiences dramatic increase and decrease at certain sections of the channel length. The magnitude of this temperature inconsistency interrelates closely to the strength of natural convection impact, and this can expose the minichannel (which has short length) to severe wall thermal stress. The local Nu experiences improvement in some section of the channel and at the same time it suffers from drastic deterioration in its value particularly at the channel end at which the convection current accommodates. The case with the lowest inlet velocity and the highest inlet temperature has the smallest fusion time at expense of the largest heat transfer fluid bulk temperature gradient before reaching the fusion time. The study is considered as a benchmark and helpful guidelines in the design of small-scaled thermal storage systems of phase change material.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1425
Author(s):  
Tarek Bouzennada ◽  
Farid Mechighel ◽  
Kaouther Ghachem ◽  
Lioua Kolsi

A 2D-symmetric numerical study of a new design of Nano-Enhanced Phase change material (NEPCM)-filled enclosure is presented in this paper. The enclosure is equipped with an inner tube allowing the circulation of the heat transfer fluid (HTF); n-Octadecane is chosen as phase change material (PCM). Comsol-Multiphysics commercial code was used to solve the governing equations. This study has been performed to examine the heat distribution and melting rate under the influence of the inner-tube position and the concentration of the nanoparticles dispersed in the PCM. The inner tube was located at three different vertical positions and the nanoparticle concentration was varied from 0 to 0.06. The results revealed that both heat transfer/melting rates are improved when the inner tube is located at the bottom region of the enclosure and by increasing the concentration of the nanoparticles. The addition of the nanoparticles enhances the heat transfer due to the considerable increase in conductivity. On the other hand, by placing the tube in the bottom area of the enclosure, the liquid PCM gets a wider space, allowing the intensification of the natural convection.


Buildings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 217 ◽  
Author(s):  
Joanna Krasoń ◽  
Przemysław Miąsik ◽  
Lech Lichołai ◽  
Bernardeta Dębska ◽  
Aleksander Starakiewicz

The article presents a comparative analysis carried out using three methods, determining the heat transfer coefficient U for a ceramic product modified with a phase change material (PCM). The purpose of the article is to determine the convergence of the resulting thermal characteristics, obtained using the experimental method, numerical simulation, and standard calculation method according to the requirements of PN-EN ISO 6946. The heat transfer coefficient is one of the basic parameters characterizing the thermal insulation of a building partition. Most often, for the thermal characteristics of the partition, we obtain from the manufacturer the value of the thermal conductivity coefficient λ for individual homogeneous materials or the heat transfer coefficient U for the finished (prefabricated) partition. In the case of a designed composite element modified with a phase change material or other material, it is not possible to obtain direct information on the above parameter. In such a case, one of the methods presented in this article should be used to determine the U factor. The U factor in all analyses was determined in stationary conditions. Research has shown a significant convergence of the resulting value of the heat transfer coefficient obtained by the assumed methods. Thanks to obtaining similar values, it is possible to continue tests of thermal characteristics of partitions by means of numerical simulation, limiting the number of experimental tests (due to the longer test time required) in assumed different partition configurations, in stationary and dynamic conditions.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Nasrin Abdollahi ◽  
Masoud Rahimi

Abstract This paper presents an experimental investigation on a hybrid solar system, including a water-based photovoltaic (PV) solar module and a phase change material (PCM)-based cooling tower, for cooling of the module. Elimination of heat from the PV module was performed by the use of water in the back of the panel. The PCM-based cooling tower was used as a postcooling system. A composite oil consisting of 82 wt% coconut oil and 18 wt% sunflower oil has been used as a novel phase change material in the cooling tower. The helical tubes of the cooling tower were fabricated in two different curvature ratios of 0.054 and 0.032. The experiments were performed at three different water flow rates of 11.71, 16.13, and 19.23 mL/s. The cooling performance evaluation was carried out using the average surface temperature and output power of the photovoltaic panel. The results indicated that diminution of the average PV surface temperature relative to the reference temperature was 34.01 and 32.36 °C at a water flow rate of 19.23 mL/s for the cooling systems with helical tube curvature ratios 0.054 and 0.032, respectively. Furthermore, the highest electric output power was achieved for the cooling system with a helical tube curvature ratio of 0.054 at a water flow rate of 19.23 mL/s.


Sign in / Sign up

Export Citation Format

Share Document