Comparative thermal performance evaluation between ultrathin flat plate pulsating heat pipe and graphite sheet for mobile electronic devices at various operating conditions

2019 ◽  
Vol 149 ◽  
pp. 1427-1434 ◽  
Author(s):  
Dong Soo Jang ◽  
Dongwoo Kim ◽  
Seong Ho Hong ◽  
Yongchan Kim
Author(s):  
Mitchell P. Hoesing ◽  
Gregory J. Michna

The ongoing development of faster and smaller electronic components has led to a need for new technologies to effectively dissipate waste thermal energy. The pulsating heat pipe (PHP) shows potential to meet this need, due to its high heat flux capacity, simplicity, and low cost. A 20-turn flat plate PHP was integrated into an aluminum flat plate heat sink with a simulated electronic load. The PHP heat sink used water as the working fluid and had 20 parallel channels with dimensions 2 mm × 2 mm × 119 mm. Experiments were run under various operating conditions, and thermal resistance of the PHP was calculated. The performance enhancement provided by the PHP was assessed by comparing the thermal resistance of the heat sink with no working fluid to that of it charged with water. Uncharged, the PHP was found to have a resistance of 1.97 K/W. Charged to a fill ratio of approximately 75% and oriented vertically, the PHP achieved a resistance of .49 K/W and .53 K/W when the condenser temperature was set to 20°C and 30°C, respectively. When the PHP was tilted to 45° above horizontal the PHP had a resistance of .76 K/W and .59 K/W when the condenser was set 20°C and 30°C, respectively. The PHP greatly improves the heat transfer properties of the heat sink compared to the aluminum plate alone. Additional considerations regarding flat plate PHP design are also presented.


Author(s):  
Larissa Krambeck ◽  
Kelvin Guessi Domiciano ◽  
Luis Alonso Betancur Arboleda ◽  
Marcia Mantelli

2019 ◽  
Vol 149 ◽  
pp. 613-624 ◽  
Author(s):  
Anand Takawale ◽  
Satyanand Abraham ◽  
Axel Sielaff ◽  
Pallab Sinha Mahapatra ◽  
Arvind Pattamatta ◽  
...  

2013 ◽  
Vol 316-317 ◽  
pp. 7-12
Author(s):  
Qing Ping Wu ◽  
Rui Xiang Wang ◽  
Xiao Peng Liu ◽  
Ya Jun Li ◽  
Rong Ji Xu ◽  
...  

The thermal performance Rov of Flat-Plate Closed-Loop Pulsating Heat Pipe(FCLPHP) are effected by several elements such as the heat load Q, the tilt angle θ and the filling ratio F, they are interacted each other. In order to predict the effect of Q and θ on the thermal performance at locations Q and θ other than the experimental data conditions, and to study the relationship among the Rov, Q and θ in the range of the experimental data, we need a fitted regression model to estimate the function relationship that describes the data. The postulated depends on the range of the regression variables encountered in the data. In this paper, a simple model was developed. Since the coefficients in the model have been estimated from the experimental data, studies were carried out on an experimental set-up. FC72 was employed as working fluid. Method of least squares was used for building the model. By using the model, effects of the heat load and the tilt angle on the thermal performance of FCLPHP were discussed. It was found that the tilt angle had minimum value in a certain heat load in the experimental range (θ=30° -70°), and it increases with the increase of heat load. A sensitivity analysis was done with the model.


2015 ◽  
Vol 96 ◽  
pp. 23-34 ◽  
Author(s):  
V. Ayel ◽  
L. Araneo ◽  
A. Scalambra ◽  
M. Mameli ◽  
C. Romestant ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document