Thermohydraulic sensitivity analysis and multi-objective optimization of Fe3O4/H2O nanofluid flow inside U-bend heat exchangers with longitudinal strip inserts

2020 ◽  
Vol 164 ◽  
pp. 114518 ◽  
Author(s):  
Amir Ebrahimi-Moghadam ◽  
Soheil Kowsari ◽  
Faezeh Farhadi ◽  
Mahdi Deymi-Dashtebayaz
Energy ◽  
2017 ◽  
Vol 137 ◽  
pp. 160-171 ◽  
Author(s):  
Mohammad Hemmat Esfe ◽  
Hadi Hajmohammad ◽  
Davood Toghraie ◽  
Hadi Rostamian ◽  
Omid Mahian ◽  
...  

Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 9
Author(s):  
Chao Yu ◽  
Xiangyao Xue ◽  
Kui Shi ◽  
Mingzhen Shao

This paper presents a method for optimizing wavy plate-fin heat exchangers accurately and efficiently. It combines CFD simulation, Radical Basis Functions (RBF) with multi-objective optimization to improve the performance. The optimization of the Colburn factor j and the friction coefficient f is regarded as a multi-objective optimization problem, due to the existence of two contradictory goals. The approximation model was obtained by Radical Basis Functions, and the shape of the heat exchanger was optimized by multi-objective genetic algorithm (MOGA). The optimization results showed that j increased by 17.62% and f decreased by 20.76%, indicating that the heat exchange efficiency was significantly enhanced and the fluid structure resistance reduced. Then, from the aspects of field synergy and tubulence energy, the performance advantage of the optimized structure was further confirmed.


Author(s):  
H Sayyaadi ◽  
H R Aminian

A regenerative gas turbine cycle with two particular tubular recuperative heat exchangers in parallel is considered for multi-objective optimization. It is assumed that tubular recuperative heat exchangers and its corresponding gas cycle are in design stage simultaneously. Three objective functions including the purchased equipment cost of recuperators, the unit cost rate of the generated power, and the exergetic efficiency of the gas cycle are considered simultaneously. Geometric specifications of the recuperator including tube length, tube outside/inside diameters, tube pitch, inside shell diameter, outer and inner tube limits of the tube bundle and the total number of disc and doughnut baffles, and main operating parameters of the gas cycle including the compressor pressure ratio, exhaust temperature of the combustion chamber and the air mass flowrate are considered as decision variables. Combination of these objectives anddecision variables with suitable engineering and physical constraints (including NO x and CO emission limitations) comprises a set of mixed integer non-linear problems. Optimization programming in MATLAB is performed using one of the most powerful and robust multi-objective optimization algorithms, namely non-dominated sorting genetic algorithm. This approach is applied to find a set of Pareto optimal solutions. Pareto optimal frontier is obtained, and a final optimal solution is selected in a decision-making process.


Author(s):  
Vahid Tahmasbi ◽  
Majid Ghoreishi ◽  
Mojtaba Zolfaghari

The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the aforementioned parameters. This optimization yielded a set of data that can considerably improve orthopedic osteosynthesis outcomes.


Sign in / Sign up

Export Citation Format

Share Document