An experimental investigation and fractal modeling on the effective thermal conductivity of novel autoclaved aerated concrete (AAC)-based composites with silica aerogels (SA)

2020 ◽  
Vol 179 ◽  
pp. 115770
Author(s):  
Ming-Liang Qu ◽  
Shuai-Qi Tian ◽  
Li-Wu Fan ◽  
Zi-Tao Yu ◽  
Jian Ge
2016 ◽  
Vol 824 ◽  
pp. 100-107 ◽  
Author(s):  
Alena Struhárová

Bulk density and moisture content are factors that significantly affect the physical properties of autoclaved aerated concrete (AAC) including thermal conductivity and other thermo-technical characteristics. This article shows the results of measurements of compressive strength, capillary absorption, water absorption and porosity of AAC (ash on fluidized fly ash) at different bulk density and also the results of thermal conductivity of AAC at different bulk density and variable moisture content of the material. The thermo-technical properties were measured using the Isomet 2104, a portable measuring device. Acquired results demonstrate dependence of physical properties including thermal conductivity of AAC on bulk density and moisture content. The reliability and accuracy of the method of measuring was also shown.


Author(s):  
Gongming Xin ◽  
Kehang Cui ◽  
Yan Chen ◽  
Wenjing Du ◽  
Yong Zou ◽  
...  

In this study, the effective thermal conductivity (ETC) of sintered loop heat pipe wicks, with pure nickel powders, pure copper powders, Ni-10wt%Cu powders and Ni-20wt%Cu powders were experimentally investigated. The ETC of sintered Ni-Cu wicks is found less than those of sintered pure nickel wick and sintered pure copper wicks. In the same porosity level, addition of copper into nickel will reduce ETC of the sintered Ni-Cu wicks. The sintered Ni-20wt%Cu wick presents the lowest ETC among the tested wick samples. Compared to experimental results, Alexander model can provide a reasonable prediction in some wick samples.


2019 ◽  
Vol 196 ◽  
pp. 555-563 ◽  
Author(s):  
Anuar Ulykbanov ◽  
Eldar Sharafutdinov ◽  
Chul-Woo Chung ◽  
Dichuan Zhang ◽  
Chang-Seon Shon

2014 ◽  
Vol 136 (5) ◽  
Author(s):  
C. D. Smoot ◽  
H. B. Ma

An experimental investigation of a compact, triple-layer oscillating heat pipe (OHP) has been conducted to determine the channel layer effect on the heat transport capability in an OHP. The OHP has dimensions 13 mm thick, 229 mm long, and 76 mm wide embedded with two-independent closed loops forming three layers of channels. The unique design of the investigated OHP can be readily used to explore the channel layering effect on the heat transport capability in the OHP. The experimental results show that the addition of channel layers can increase the total power and at the same time, it can increase the effective thermal conductivity of the OHP. When the OHP switches from one layer of channels to two layers of channels, the highest effective thermal conductivity can be increased from 5760 W/mK to 26,560 W/mK. At the same time, the dryout limit can be increased. With three layers of channels, the OHP investigated herein can transport a power up to 8 kW with a heat flux level of 103 W/cm2 achieving an effective thermal conductivity of 33,170 W/mK.


Sign in / Sign up

Export Citation Format

Share Document