Waste-heat recovery from a vapor-absorption refrigeration system for a desalination plant

Author(s):  
Naef A.A. Qasem
2008 ◽  
Vol 12 (3) ◽  
pp. 5-13 ◽  
Author(s):  
Anand Ramanathan ◽  
Prabhakaran Gunasekaran

An automotive air-conditioning system based on absorption refrigeration cycle has been simulated. This waste heat driven vapor absorption refrigeration system is one alternate to the currently used vapour compression refrigeration system for automotive air-conditioning. Performance analysis of vapor absorption refrigeration system has been done by developing a steady-state simulation model to find the limitation of the proposed system. The water-lithium bromide pair is used as a working mixture for its favorable thermodynamic and transport properties compared to the conventional refrigerants utilized in vapor compression refrigeration applications. The pump power required for the proposed vapor absorption refrigeration system was found lesser than the power required to operate the compressor used in the conventional vapor compression refrigeration system. A possible arrangement of the absorption system for automobile application is proposed.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
T. K. Gogoi

In this paper, an inverse problem is solved for estimating parameters of a steam-driven water–lithium bromide (LiBr) vapor absorption refrigeration system (VARS) using a differential evolution (DE)-based inverse approach. Initially, a forward model simulates the steady-state performance of the VARS at various operating temperatures and evaporator cooling loads (CLs). A DE-based inverse analysis is then performed to estimate the operating parameters taking VARS coefficient of performance (COP), CL, total irreversibility, and exergy efficiency as objective functions (one objective function at a time). DE-based inverse technique estimates the parameters within a very short period of elapsed time. Over 50 and 100 numbers of generations are sufficient for retrieval of COP and exergy efficiency, respectively, while it requires 150 generations for total irreversibility and CL. The study reveals that multiple combinations of parameters within a given range satisfy a particular objective function which serves as design guidelines in selecting appropriate operating parameters.


Sign in / Sign up

Export Citation Format

Share Document