Perfluorocarbon emissions from electrolytic reduction of rare earth metals in fluoride/oxide system

2018 ◽  
Vol 9 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Lizhi Zhang ◽  
Xiufeng Wang ◽  
Bin Gong
2021 ◽  
Vol 4 (1) ◽  
pp. 43-48
Author(s):  
I Gusti Agung Putra Adnyana ◽  
I Ketut Sukarasa ◽  
Komang Ngurah Suarbawa

The development of permanent magnet-based rare earth metals becomes a serious problem if the raw materials are difficult to find. The solution chosen is to utilize an oxide-based permanent magnet with little substitution of rare earth metals. In this study presented a permanent magnetic synthesis of barium hexaferrite-based oxides that were doped with La and Ce atoms. The synthesis of this material uses the wet mechanical milling technique to obtain the single phase permanent magnet system Ba1-x-yLaxCeyFe12O19 (x = 0, 0.02, 0.04 and y = 0. 0.05, 0.1). The precursor is weighed according to stoichiometric composition and is milled for 5 hours then compressed at a pressure of 7000 Psi. Sintering temperature for the formation of the barium hexaferrite phase at 1200oC for 2 hours. All samples after sintering were characterized using XRD and EDS.  A single phase is obtained on all sample compositions with a hexagonal P63/mmc structure and is supported by elemental analysis data that each substituted sample contains elements La and Ce. Lattice parameters a, b, and c appear to decrease with increasing concentrations of La and Ce doping ions with a ratio of c/a in the range of 3.93-3.94.


1979 ◽  
Vol 40 (C5) ◽  
pp. C5-260-C5-261 ◽  
Author(s):  
M. Müller ◽  
E. Huber ◽  
H.-J. Güntherodt

1980 ◽  
Vol 41 (C1) ◽  
pp. C1-25-C1-31 ◽  
Author(s):  
N. S. Dixon ◽  
L. S. Fritz ◽  
Y. Mahmud ◽  
B. B. Triplett ◽  
S. S. Hanna ◽  
...  

2015 ◽  
Vol 53 (9) ◽  
pp. 637-641
Author(s):  
Chul-Woo Nam ◽  
Kyung-Ho Park ◽  
Hyun-Ho Kim ◽  
Jin-Tae Park

1963 ◽  
Vol 79 (2) ◽  
pp. 263-293 ◽  
Author(s):  
E.M. Savitskii ◽  
V.F. Terekhova ◽  
O.P. Naumkin

1964 ◽  
Vol 82 (3) ◽  
pp. 449-498 ◽  
Author(s):  
Konstantin P. Belov ◽  
R.Z. Levitin ◽  
S.A. Nikitin
Keyword(s):  

2018 ◽  
Vol 84 (11) ◽  
pp. 9-14
Author(s):  
E. S. Koshel ◽  
V. B. Baranovskaya ◽  
M. S. Doronina

The analytical capabilities of arc atomic emission determination of As, Bi, Sb, Cu, Te in rare earth metals (REM) and their oxides after preparatory group concentration using S,N-containing heterochain polymer sorbent are studied on a high-resolution spectrometer “Grand- Extra” (“WMC-Optoelectron-ics” company, Russia). Sorption kinetics and dependence of the degree of the impurity extraction on the solution acidity are analyzed to specify conditions of sorption concentration. To optimize the procedure of arc atomic emission determination of As, Bi, Sb, Cu, and Te various schemes of their sorption preconcentration and subsequent processing of the resulted concentrate with the addition of a collector at different stages of the sorption process have been considered. Graphite powder is used as a collector in analysis of rare earth oxides due to universality and relative simplicity of the emission spectrum. Conditions of analysis and parameters of the spectrometer that affect the analytical signal (mass and composition of the sample, shape and size of the electrodes, current intensity and generator operation mode, interelectrode spacing, wavelengths of the analytical lines) are chosen. The evaporation curves of the determinable impurities were studied and the exposure time of As, Bi, Sb, Cu, and Te in the resulted sorption concentrate was determined. Correctness of the obtained results was evaluated using standard samples of the composition and in comparisons between methods. The results of the study are used to develop a method of arc chemical-atomic emission analysis of yttrium, gadolinium, neodymium, europium, scandium and their oxides in a concentration range of n x (10-2 - 10-5) wt.%.


2018 ◽  
Vol 17 (8) ◽  
pp. 2001-2009
Author(s):  
Tatjana Juzsakova ◽  
Akos Redey ◽  
Le Phuoc Cuong ◽  
Zsofia Kovacs ◽  
Tamas Frater ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document