scholarly journals Dendrocalamus latiflorus and its component rutin exhibit glucose-lowering activities by inhibiting hepatic glucose production via AKT activation

Author(s):  
Kun Luo ◽  
Wenting Huang ◽  
Liansheng Qiao ◽  
Xiaoling Zhang ◽  
Di Yan ◽  
...  
2013 ◽  
Vol 455 (2) ◽  
pp. 207-216 ◽  
Author(s):  
Kenneth K. Y. Cheng ◽  
Karen S. L. Lam ◽  
Yu Wang ◽  
Donghai Wu ◽  
Mingliang Zhang ◽  
...  

The adaptor protein APPL1 undergoes ubiquitination upon insulin stimulation in a TRAF6-dependent manner. Abrogation of APPL1 ubiquitination blocks insulin-evoked membrane localization of the APPL1–Akt complex, leading to impaired insulin actions on Akt activation and suppression of hepatic glucose production.


2009 ◽  
Vol 9 (5) ◽  
pp. 417-427 ◽  
Author(s):  
Kenneth K.Y. Cheng ◽  
Miguel A. Iglesias ◽  
Karen S.L. Lam ◽  
Yu Wang ◽  
Gary Sweeney ◽  
...  

2019 ◽  
Author(s):  
Xiuqing Han ◽  
Steffen H. Raun ◽  
Michala Carlsson ◽  
Kim A. Sjøberg ◽  
Carlos Henriquez-Olguín ◽  
...  

AbstractBackgroundRedirecting glucose from skeletal muscle and adipose tissue, likely benefits the tumor’s energy demand to support tumor growth, as cancer patients with type 2 diabetes have 30% increased mortality rates. The aim of this study was to elucidate tissue-specific contributions and molecular mechanisms underlying cancer-induced metabolic perturbations.MethodsGlucose uptake in skeletal muscle and white adipose tissue (WAT), as well as hepatic glucose production, were determined in control and Lewis lung carcinoma (LLC) tumor-bearing C57BL/6 mice using isotopic tracers. Skeletal muscle microvascular perfusion was analyzed via a real-time contrast-enhanced ultrasound technique. Finally, the role of fatty acid turnover on glycemic control was determined by treating tumor-bearing insulin-resistant mice with nicotinic acid or etomoxir.ResultsLLC tumor-bearing mice displayed reduced insulin-induced blood-glucose-lowering and glucose intolerance, which was restored by etomoxir or nicotinic acid. Insulin-stimulated glucose uptake was 30-40% reduced in skeletal muscle and WAT of mice carrying large tumors. Despite compromised glucose uptake, tumor-bearing mice displayed upregulated insulin-stimulated phosphorylation of TBC1D4Thr642 (+18%), AKTSer474 (+65%), and AKTThr309 (+86%) in muscle. Insulin caused a 70% increase in muscle microvascular perfusion in control mice, which was abolished in tumor-bearing mice. Additionally, tumor-bearing mice displayed increased (+45%) basal (not insulin-stimulated) hepatic glucose production.ConclusionsCancer can result in marked perturbations on at least six metabolically essential functions; i) insulin’s blood-glucose-lowering effect, ii) glucose tolerance, iii) skeletal muscle and WAT insulin-stimulated glucose uptake, iv) intramyocellular insulin signaling, v) muscle microvascular perfusion, and vi) basal hepatic glucose production in mice. The mechanism causing cancer-induced insulin resistance may relate to fatty acid metabolism.


2013 ◽  
Vol 51 (01) ◽  
Author(s):  
S Gul ◽  
KH Holzmann ◽  
F Leithäuser ◽  
H Maier ◽  
B Böhm ◽  
...  

1989 ◽  
Vol 120 (3_Suppl) ◽  
pp. S20
Author(s):  
M.J. MÜLLER ◽  
K.J. ACHESON ◽  
A. G. BURGER ◽  
E. JEQUIER ◽  
A. VON ZUR MÜHLEN

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2441-PUB ◽  
Author(s):  
QUAN PAN ◽  
YUNMEI CHEN ◽  
HUI YAN ◽  
WANBAO YANG ◽  
ZHENG SHEN ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 64-LB
Author(s):  
JEONGRIM KO ◽  
TAE NYUN KIM ◽  
DAE YUN SEO ◽  
JIN HAN

Diabetes ◽  
1986 ◽  
Vol 35 (2) ◽  
pp. 186-191 ◽  
Author(s):  
I. Hansen ◽  
R. Firth ◽  
M. Haymond ◽  
P. Cryer ◽  
R. Rizza

Sign in / Sign up

Export Citation Format

Share Document