Long term combined fertilization and soil aggregate size on the denitrification and community of denitrifiers

2020 ◽  
Vol 156 ◽  
pp. 103718
Author(s):  
Pei-Pei Li ◽  
Shui-Qing Zhang ◽  
Fang Li ◽  
Yu-Ting Zhang ◽  
Yan-Lai Han
Geoderma ◽  
2019 ◽  
Vol 338 ◽  
pp. 107-117 ◽  
Author(s):  
Pei-Pei Li ◽  
Yan-Lai Han ◽  
Ji-Zheng He ◽  
Shui-Qing Zhang ◽  
Li-Mei Zhang

Geoderma ◽  
2019 ◽  
Vol 337 ◽  
pp. 1086-1096 ◽  
Author(s):  
S.H. Reeves ◽  
J. Somasundaram ◽  
W.J. Wang ◽  
M.A. Heenan ◽  
D. Finn ◽  
...  

2021 ◽  
Author(s):  
Wenjing Chen ◽  
Huakun Zhou ◽  
Leilei Qiao ◽  
Yuanze Li ◽  
Yang Wu ◽  
...  

Abstract Background and aims Global warming has increasingly serious impacts on the structure and function of the Tibetan Plateau ecosystem. However, the mechanism by which warming affects the biogeochemical processes, and consequently the microbial nutrient limitation in soil aggregates, is not clear. Methods In the present study, we used open-top chamber experiments to simulate warming in an alpine meadow and an alpine shrubland on the Qinghai-Tibet Plateau, and we measured the C, N, and P-acquiring enzyme (β-1, 4-glucosidase, BG; leucine aminopeptidase, LAP; β-N-acetylglucosaminidase, NAG; alkali phosphatase, AP) activities and their stoichiometry to understand how warming affects microorganism-limiting mechanisms in soil aggregates. Results The results showed that long-term warming treatment significantly decreased soil organic carbon (SOC) and total nitrogen (TN) concentrations of large macroaggregates (LMGA) and small macroaggregates (SMGA) in alpine meadows, but significantly increased SOC concentration of LMGA in alpine shrubland. The SOC and TN concentrations of alpine meadows increased with the decrease of soil aggregate size and the concentrations in microaggregate (MIGA) were significantly higher than those LMGA. Soil enzyme activity increased with the decrease in aggregate size and was not significantly affected by warming treatment. Enzyme stoichiometry results demonstrated that soil microbes in alpine meadows and shrubland were limited by nutrient P relative to nitrogen; moreover, the long-term warming treatment aggravated the P limitation of soil microorganisms in the shrubland, and it had significant differences in LMGA and MIGA. At the same time, the long-term warming treatment had no significant effect on C limitation in the alpine shrubland and alpine meadows, but soil aggregate size affected the C limitation patterns of microorganisms and showed the greatest limitations in MIGA. Conclusions The microbial P limitation in shrubland is more sensitive to warming than that in meadow. Soil aggregates mediate the acquisition of C by microorganisms, and the C limitation in MIGA is the greatest. By providing a new perspective on this topic, our study increased our understanding of the effects of warming on microbial nutrient utilization and restriction patterns in soil aggregates.


2021 ◽  
Vol 154 ◽  
pp. 108143
Author(s):  
Shun Han ◽  
Manuel Delgado-Baquerizo ◽  
Xuesong Luo ◽  
Yurong Liu ◽  
Joy D. Van Nostrand ◽  
...  

2018 ◽  
Vol 233 ◽  
pp. 569-576 ◽  
Author(s):  
Qi Li ◽  
Huihui Du ◽  
Wenli Chen ◽  
Jialong Hao ◽  
Qiaoyun Huang ◽  
...  

2009 ◽  
Vol 69 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Maxim Dorodnikov ◽  
Evgenia Blagodatskaya ◽  
Sergey Blagodatsky ◽  
Andreas Fangmeier ◽  
Yakov Kuzyakov

Soil Research ◽  
1995 ◽  
Vol 33 (1) ◽  
pp. 153 ◽  
Author(s):  
AJ Gijsman ◽  
RJ Thomas

This study evaluated soil aggregate size distribution and stability of an Oxisol under improved grass-only or grass-legume pastures, established in previously native savanna. Three grass-legume combinations were included at various stocking rates. In all treatments and soil layers, soils were well aggregated, having more than 90% of their weight in macroaggregates (>250 �m). The addition of legumes to pastures did not affect the soil aggregate size distribution, although aggregates showed somewhat more stability against slaking. An increase in stocking rate negatively affected both average aggregate size and aggregate stability. Aggregates showed little or no dispersion of clay particles in any treatment. A positive correlation was found between wet aggregate stability and hot-water extractable carbohydrate concentration, supporting the hypothesis that these carbohydrates equate with plant-derived or microbial polysaccharides which glue soil aggregates together. It is suggested that determination of hot-water extractable carbohydrates may serve as a useful indicator of small differences in aggregate stability, even when these differences are not evident in the stability measurement itself.


Sign in / Sign up

Export Citation Format

Share Document