Temperature dependence of W metallic coatings synthesized by double glow plasma surface alloying technology on CVD diamond films

2015 ◽  
Vol 356 ◽  
pp. 429-437 ◽  
Author(s):  
Jie Gao ◽  
Hongjun Hei ◽  
Yanyan Shen ◽  
Xiaoping Liu ◽  
Bin Tang ◽  
...  
2013 ◽  
Vol 49 ◽  
pp. 1042-1047 ◽  
Author(s):  
Qiong Wang ◽  
Ping-Ze Zhang ◽  
Dong-Bo Wei ◽  
Ruo-Nan Wang ◽  
Xiao-Hu Chen ◽  
...  

2015 ◽  
Vol 278 ◽  
pp. 92-98 ◽  
Author(s):  
Zhong-Kai Qiu ◽  
Ping-Ze Zhang ◽  
Dong-Bo Wei ◽  
Xiang-Fei Wei ◽  
Xiao-Hu Chen

2014 ◽  
Vol 21 (03) ◽  
pp. 1450032 ◽  
Author(s):  
NAIMING LIN ◽  
JUNWEN GUO ◽  
RUIQIANG HANG ◽  
JIAOJUAN ZOU ◽  
BIN TANG

In order to endow the commercial pure titanium dental implant material with antibacterial property and aimed at avoiding the invalidation that is caused by bacterial adhesion on the surface, a silver coating was fabricated via double glow plasma surface alloying. The antibacterial property of the silver coating was assessed via in vitro estimation. The results showed that a continuous and compact coating was formed. The silver coating had absolute superiority in antibacterial property to raw commercial pure titanium. Double glow plasma surface alloying with silver on commercial pure titanium dental implant material could be considered as a potentially effective method for preventing bacterial adhesion.


2000 ◽  
Vol 131 (1-3) ◽  
pp. 378-382 ◽  
Author(s):  
Xu Zhang ◽  
Xishan Xie ◽  
Zhongmin Yang ◽  
Jianxin Dong ◽  
Zhong Xu ◽  
...  

2007 ◽  
Vol 201 (9-11) ◽  
pp. 4822-4825 ◽  
Author(s):  
Z. Xu ◽  
X. Liu ◽  
P. Zhang ◽  
Y. Zhang ◽  
G. Zhang ◽  
...  

2011 ◽  
Vol 675-677 ◽  
pp. 1253-1257 ◽  
Author(s):  
Chang Bin Tang ◽  
Dao Xin Liu ◽  
Fan Qiao Li ◽  
Bin Tang ◽  
Lin Qin

W-Mo and W-Mo-N surface-modified layers on Ti6Al4V alloy were obtained using a double glow plasma surface alloying technique. The morphology, microstructure, and chemical composition distribution of the modified layers were analyzed by scanning electron microscope, Xray diffraction, and glow discharge optical emission spectrometry. The hardness and toughness of the modified layers were measured using a micro-hardness tester, and dynamic repeating press equipment. The wear resistance in ambient air and the corrosive wear resistance in NaCl solution were evaluated using a ball-on-disk wear tester. The results show that W-Mo and W-Mo-N surface modified layers are composed of the alloying layers which vary in composition and phase form along the depth. A microhardness gradient was observed in the modified-surface layers. The surface hardness of the W-Mo-N and W-Mo modified layers was 25.3 and 14.2 GPa, which is seven-fold and 3.9-fold harder than the Ti6Al4V substrate, respectively. W-Mo and W-Mo-N surface-modified layers significantly improved the wear and corrosion resistance of Ti6Al4V. It seems that the wear resistance of W-Mo and W-Mo-N surface-modified layers in NaCl solution is better than that in ambient air owing to the strong lubricating effect of NaCl solution and the excellent corrosion resistance of the modified layers.


Sign in / Sign up

Export Citation Format

Share Document