Improvement in Wear and Corrosive Wear Resistance of Ti6Al4V Alloy by Double Glow Plasma Surface Alloying with W-Mo and W-Mo-N

2011 ◽  
Vol 675-677 ◽  
pp. 1253-1257 ◽  
Author(s):  
Chang Bin Tang ◽  
Dao Xin Liu ◽  
Fan Qiao Li ◽  
Bin Tang ◽  
Lin Qin

W-Mo and W-Mo-N surface-modified layers on Ti6Al4V alloy were obtained using a double glow plasma surface alloying technique. The morphology, microstructure, and chemical composition distribution of the modified layers were analyzed by scanning electron microscope, Xray diffraction, and glow discharge optical emission spectrometry. The hardness and toughness of the modified layers were measured using a micro-hardness tester, and dynamic repeating press equipment. The wear resistance in ambient air and the corrosive wear resistance in NaCl solution were evaluated using a ball-on-disk wear tester. The results show that W-Mo and W-Mo-N surface modified layers are composed of the alloying layers which vary in composition and phase form along the depth. A microhardness gradient was observed in the modified-surface layers. The surface hardness of the W-Mo-N and W-Mo modified layers was 25.3 and 14.2 GPa, which is seven-fold and 3.9-fold harder than the Ti6Al4V substrate, respectively. W-Mo and W-Mo-N surface-modified layers significantly improved the wear and corrosion resistance of Ti6Al4V. It seems that the wear resistance of W-Mo and W-Mo-N surface-modified layers in NaCl solution is better than that in ambient air owing to the strong lubricating effect of NaCl solution and the excellent corrosion resistance of the modified layers.

2013 ◽  
Vol 49 ◽  
pp. 1042-1047 ◽  
Author(s):  
Qiong Wang ◽  
Ping-Ze Zhang ◽  
Dong-Bo Wei ◽  
Ruo-Nan Wang ◽  
Xiao-Hu Chen ◽  
...  

2019 ◽  
Vol 55 (2) ◽  
pp. 227-234 ◽  
Author(s):  
D.-B. Wei ◽  
H.-X. Liang ◽  
S.-Q. Li ◽  
F.-K. Li ◽  
F. Ding ◽  
...  

In the present paper, plasma surface alloying was implemented on powder metallurgy gears to improve its wear resistance based on double glow plasma surface metallurgy technology. A W-Mo alloy coating was obtained in the process. The morphology, microstructure and phase composition were investigated by SEM, EDS and XRD. The hardness was examined by Vickers hardness test and nanoindentation test. The tribological behavior of powder metallurgy gears before and after plasma surface alloying was evaluated on a ball-on-disc reciprocating sliding tribometer under dry sliding condition at room temperature. The results indicate that the W-Mo alloy coating is homogeneous without defects, which includes deposition layer and interdiffusion layer. The average microhardness of powder metallurgy gears before and after plasma surface alloying is 145.8 HV0.1 and 344.4 HV0.1, respectively; Nano hardness of deposition layer and interdiffusion layer is 5.76 GPa, 14.35 GPa, respectively. The specific wear rate of W-Mo alloy coating is lower than original PM gears. The wear mechanism of W-Mo alloy coating is slight adhesive wear. The W-Mo alloy coating prepared by double glow plasma surface alloying technology can effectively improve wear resistance of powder metallurgy gears.


Coatings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 336 ◽  
Author(s):  
Jianjun Hu ◽  
Jing Wang ◽  
Jie Jiang ◽  
Xian Yang ◽  
Hongbin Xu ◽  
...  

In this study, Cr–Mo duplex-alloyed coating was prepared on carbon steel by double glow plasma surface alloying (DGPSA). The effect of annealing and quenching and tempering (Q&T) treatments on the microstructure and performance of the coating was investigated by X-ray diffraction (XRD), energy dispersive spectrometry (EDS), backscattering electron imaging (BSEI) and electron backscattering diffraction (EBSD) techniques. The results show that a gradient structured coating composed of an Fe–Cr–Mo solid solution (Fe–Cr–Mo SS) layer and an alloyed pearlite layer was obtained on the steel surface. The affected layer was adjacent to the coating. After annealing or Q&T, more carbides precipitated in the Fe–Cr–Mo SS layer and alloyed pearlite layer. Most of the C atoms in the subsurface were dragged into the coating to form carbides in the Fe–Cr–Mo SS and alloyed pearlite layers of the coating, transforming the affected layers into a carbon-poor zone. Annealing and Q&T hardly modified the thickness of the coating, but greatly changed the hardness and corrosion resistance of the coating. The Q&T treated samples had higher hardness and better corrosion resistance than the as-DGPSA treated and the annealed samples.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1205
Author(s):  
Zheng Ding ◽  
Qiang Miao ◽  
Wenping Liang ◽  
Zhengang Yang ◽  
Shiwei Zuo

In this paper, the performance of low-carbon steel is enhanced after introducing a borocarburized diffusion layer via double glow plasma surface alloying technology. Due to the boron-carbon gradient structure of low-carbon steel, the protective coating exhibits an excellent wear and corrosion resistance. Interestingly, the borocarburized layer consists of a 64 μm carburized layer and a 27 μm boride layer, which plays an effective role in enhancing the microhardness of borocarburized low-carbon steel, exhibiting a 1440 Vickers hardness increase in the surface microhardness of low-carbon steel. The potentiodynamic polarization measurement and impedance measurement results indicate that the boride protective film can effectively prevent aggressive chloride ions from invading the substrate, which indicates an excellent property of corrosion resistance. This systematic study paves a promising way for the future application of hard coatings in severe environments.


2007 ◽  
Vol 201 (9-11) ◽  
pp. 5302-5305 ◽  
Author(s):  
X.Y. Kui ◽  
J.Z. Wang ◽  
Y.P. Liu ◽  
J.Y. Xu ◽  
Y. Gao ◽  
...  

2019 ◽  
Vol 9 (9) ◽  
pp. 1849 ◽  
Author(s):  
Dongbo Wei ◽  
Fengkun Li ◽  
Shuqin Li ◽  
Xiaohu Chen ◽  
Feng Ding ◽  
...  

A new surface strengthening process: Plasma surface chromizing was implemented on the metallic card clothing to improve its wear resistance based on double glow plasma surface metallurgy technology. A chromizing coating was prepared in the process, which consisted of a deposited layer and diffusion layer. The surface morphologies, microstructure, phase composition, and hardness were analyzed in detail. The friction behaviors of the metallic card clothing before and after plasma surface alloying were comparatively analyzed under various sliding speeds at room temperature. The results showed that: 1. The chromizing coating on the surface of metallic card clothing was dense and homogeneous without defects, and the metallic card clothing still maintained its integrity and sharpness. 2. The chromizing coating consist of [Fe,Cr], Cr, Cr23C6, and Cr7C3, which contribute to the high hardness. 3. The average microhardness of metallic card clothing increased from 365.4 HV0.05 to 564.9 HV0.05 after plasma surface chromizing. Nano hardness of the chromizing coating was approximately 1.87 times than the metallic card clothing. 4. At various sliding velocities of 2 m/min, 4 m/min, and 6 m/min, the specific wear rates of metallic card clothing were 16.38, 9.06 and 6.26 × 10−4·mm3·N−1·m−1, and the specific wear rates of metallic card clothing after plasma surface chromizing were 2.91, 3.30, and 2.95 × 10−4·mm3·N−1·m−1. Furthermore, the wear mechanism of the chromizing coating gradually changed from adhesive wear to abrasive wear as the sliding velocity increased. The results indicate that the wear resistance of metallic card clothing was improved obviously after plasma surface chromizing.


Sign in / Sign up

Export Citation Format

Share Document