NiCo2O4 hierarchical structure coated mesh with long-term stable underwater superoleophobicity for high-efficient, high-flux oil-water separation

2020 ◽  
Vol 504 ◽  
pp. 144598 ◽  
Author(s):  
Yuezhong Zhang ◽  
Huihui Wang ◽  
Baosheng Liu ◽  
Xudong Zhao ◽  
Yinghui Wei
2020 ◽  
Vol 56 (4) ◽  
pp. 3140-3154
Author(s):  
Jinmei He ◽  
Jiehui Li ◽  
Lili Ma ◽  
Yajie Pang ◽  
Lulu Liu ◽  
...  

2021 ◽  
Vol 18 (4) ◽  
pp. 887-899
Author(s):  
Yanling Tian ◽  
Jiekai Feng ◽  
Zexin Cai ◽  
Jiaqi Chao ◽  
Dawei Zhang ◽  
...  

AbstractReckless discharge of industrial wastewater and domestic sewage as well as frequent leakage of crude oil have caused serious environmental problems and posed severe threat to human survival. Various nature inspired superhy-drophobic surfaces have been successfully applied in oily water remediation. However, further improvements are still urgently needed for practical application in terms of facile synthesis process and long-term durability towards harsh environment. Herein, we propose a simple one-step dodecyl mercaptan functionalization method to fabricate Super-hydrophobic-Superoleophilic Copper Mesh (SSCM). The prepared SSCM possesses excellent water repellence and oil affinity, enabling it to successfully separate various oil-water mixtures with high separation efficiency (e.g., > 99% for hexadecane-water mixture). The SSCM retains high separating ability when hot water and strong corrosive aqueous solutions are used to simulate oil-water mixtures, indicating remarkable chemical durability of the dodecyl mercaptan functionalized copper mesh. Additionally, the efficiency can be well maintained during 50 cycles of separation, and the water repellence is even stable after storage in air for 120 days, demonstrating the reusability and long-term stability of the SSCM. Furthermore, the functionalized mesh also shows good mechanical robustness towards abrasion by sandpaper, and oil-water separation efficiency of > 96% can be obtained after 10 cycles of abrasion. The reported one-step dodecyl mercaptan functionalization could be a simple method for increasing the water repellence of copper mesh, and thereby be a great candidate for treating large-scale oily wastewater in harsh environments.


NANO ◽  
2021 ◽  
pp. 2150061
Author(s):  
Yuntian Wan ◽  
Xue Lin ◽  
Zhongshuai Chang ◽  
Xiaohui Dai ◽  
Jiangdong Dai

Currently, with the increasingly serious pollution problem of oily wastewater, it is urgent to develop advanced materials and methods. In this work, a Fe(III)-CMC@Ni(OH)2@Ni composite foam with superhydrophilic and underwater superoleophobicity was fabricated by an in situ growth of flower-like Ni(OH)2 nanoparticles and chelated assembly of Fe(III)-CMC nanohydrogel via a layer-by-layer self assembly using Fe[Formula: see text] ion and carboxymethyl cellulose (CMC). The composite foam could separate various oil/water mixtures and exhibited excellent efficiency over 99%. This foam possessed ultrahigh water flux (220000[Formula: see text]L m[Formula: see text] h[Formula: see text] and better resistant to penetration pressure (1.3[Formula: see text]kPa). After 30 cycles, the oil–water separation performance reduced only 0.5%, but the foam structure was still stable that guarantees a better lifetime. Besides, this composite foam showed anti-fouling, unique durability and excellent corrosion resistance performance. Taking into account all good properties, Fe(III)-CMC@Ni(OH)2@Ni composite foam was expected to be a potential candidate for responding to all kinds of complex oily wastewater conditions.


2013 ◽  
Vol 26 (11) ◽  
pp. 1771-1775 ◽  
Author(s):  
Xuefei Gao ◽  
Li-Ping Xu ◽  
Zhongxin Xue ◽  
Lin Feng ◽  
Jitao Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document