Oxidant-Induced High-Efficient Mussel-Inspired Modification on PVDF Membrane with Superhydrophilicity and Underwater Superoleophobicity Characteristics for Oil/Water Separation

2017 ◽  
Vol 9 (9) ◽  
pp. 8297-8307 ◽  
Author(s):  
Chongdan Luo ◽  
Qingxia Liu
Author(s):  
Jayaramulu Kolleboyina ◽  
HANEESH SAINI ◽  
Parashuram Kallem ◽  
Eva Otyepková ◽  
Florian Geyer ◽  
...  

Superhydrophobic MOF-nanosheets assembled on the outside of an aqueous droplet form ‘liquid marbles’. A facile mechanochemical-based synthesis followed by ultrasonication was used to prepare two-dimensional superhydrophobic-oleophilic MOF nanosheets of a...


NANO ◽  
2021 ◽  
pp. 2150061
Author(s):  
Yuntian Wan ◽  
Xue Lin ◽  
Zhongshuai Chang ◽  
Xiaohui Dai ◽  
Jiangdong Dai

Currently, with the increasingly serious pollution problem of oily wastewater, it is urgent to develop advanced materials and methods. In this work, a Fe(III)-CMC@Ni(OH)2@Ni composite foam with superhydrophilic and underwater superoleophobicity was fabricated by an in situ growth of flower-like Ni(OH)2 nanoparticles and chelated assembly of Fe(III)-CMC nanohydrogel via a layer-by-layer self assembly using Fe[Formula: see text] ion and carboxymethyl cellulose (CMC). The composite foam could separate various oil/water mixtures and exhibited excellent efficiency over 99%. This foam possessed ultrahigh water flux (220000[Formula: see text]L m[Formula: see text] h[Formula: see text] and better resistant to penetration pressure (1.3[Formula: see text]kPa). After 30 cycles, the oil–water separation performance reduced only 0.5%, but the foam structure was still stable that guarantees a better lifetime. Besides, this composite foam showed anti-fouling, unique durability and excellent corrosion resistance performance. Taking into account all good properties, Fe(III)-CMC@Ni(OH)2@Ni composite foam was expected to be a potential candidate for responding to all kinds of complex oily wastewater conditions.


2020 ◽  
Vol 44 (48) ◽  
pp. 20999-21006
Author(s):  
Junda Wu ◽  
Atian Xie ◽  
Jin Yang ◽  
Jiangdong Dai ◽  
Chunxiang Li ◽  
...  

A facile modification of a PVDF membrane using CaCO3 inorganic particles via a layer-by-layer self-assembly process for efficient oil/water separation.


2013 ◽  
Vol 26 (11) ◽  
pp. 1771-1775 ◽  
Author(s):  
Xuefei Gao ◽  
Li-Ping Xu ◽  
Zhongxin Xue ◽  
Lin Feng ◽  
Jitao Peng ◽  
...  

2020 ◽  
Vol 2 (12) ◽  
Author(s):  
Yijing Wang ◽  
Ling Jin ◽  
Tao Xue ◽  
Feifei Shao ◽  
Yuan Yao ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (90) ◽  
pp. 87332-87340 ◽  
Author(s):  
Y. W. Liu ◽  
C. H. Zhang ◽  
Z. Q. Wang ◽  
X. Fu ◽  
R. Wei

Scaly structure bionic structured on the fabric with superhydrophilicity and underwater superoleophobicity. The modified fabric showed excellent separation efficiency for various oil–water mixtures which could solve oil–water separation issue.


2021 ◽  
pp. 119813 ◽  
Author(s):  
Xueting Zhao ◽  
Youyou Lan ◽  
Jiefeng Pan ◽  
Ruoxi Wang ◽  
Tingyuan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document