A-site deficient perovskite nanofibers boost oxygen evolution reaction for zinc-air batteries

2021 ◽  
Vol 536 ◽  
pp. 147806
Author(s):  
Xuyang Wu ◽  
He Miao ◽  
Ruigan Hu ◽  
Bin Chen ◽  
Mingming Yin ◽  
...  
Author(s):  
Xin Yu Gao ◽  
Xingwei Sun ◽  
Jia Hui Guo ◽  
Ya Nan Teng ◽  
Lei Liu ◽  
...  

The exploration of bifunctional oxygen electrode towards oxygen evolution reaction (OER) activity and oxygen reduction reaction (ORR) is the bottlenecks for the development of rechargeable zinc-air battery as a clean...


2017 ◽  
Vol 1 (4) ◽  
pp. 677-682 ◽  
Author(s):  
Bing Li ◽  
Sheau-Wei Chien ◽  
Xiaoming Ge ◽  
Jianwei Chai ◽  
Xin-Yi Goh ◽  
...  

Ni/NiOxnanoparticle-decorated carbon nanofibers as efficient oxygen evolution reaction catalysts for high-performance rechargeable Zn–air batteries.


Author(s):  
Jiacheng Li ◽  
Wanqing Li ◽  
Hongwei Mi ◽  
Yongliang Li ◽  
Libo Deng ◽  
...  

The development of high-efficiency and durable bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts as air cathodes is still a challenge in energy storage and conversion. In...


2019 ◽  
Author(s):  
Denis Kuznetsov ◽  
Jiayu Peng ◽  
Livia Giordano ◽  
Yuriy Román-Leshkov ◽  
Yang Shao-Horn

In this study, we employ the strategy of substitution with more electronegative/acidic A-site ions in the cobalt perovskites to alter O 2p-band center, surface hydroxide affinity, and oxygen evolution reaction (OER) activity and stability in the basic electrolyte. Galvanostatically charged Bi<sub>0.2</sub>Sr<sub>0.8</sub>CoO<sub>3-δ</sub> (δ close to zero) was shown to exhibit record OER specific activity exceeding not only La<sub>x</sub>Sr<sub>1-x</sub>CoO<sub>3-δ</sub> but also charged SrCoO<sub>3-δ</sub> (δ close to zero), one of the most active oxide OER catalysts reported so far. The enhanced OER activity of charged Bi<sub>0.2</sub>Sr<sub>0.8</sub>CoO<sub>3-δ</sub> can be attributed to greater hydroxide affinity facilitating the deprotonation of surface bound intermediates due to the presence of strong Lewis acidic A-site Bi<sup>3+</sup> ions, while the high stability can result from lowered O 2p-band center relative to the Fermi level. This work provides a novel example in the rational design of highly active oxide catalysts for OER by leveraging the inductive effect.


Author(s):  
Yuta Inoue ◽  
Yuto Miyahara ◽  
Kohei Miyazaki ◽  
Yasuyuki Kondo ◽  
Yuko Yokoyama ◽  
...  

Abstract Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) is a promising electrocatalyst for the oxygen evolution reaction (OER) in alkaline solution. The OER activities of BSCF are gradually enhanced by prolonging the duration of electrochemical operation at OER potentials, but the underlying cause is not fully understood. In this study, we investigated the role of chemical operation, equivalent to immersion in alkaline solution, in the time-course of OER enhancement of BSCF. Interestingly, the time-course OER enhancement of BSCF was promoted not only by electrochemical operation, which corresponds to potential cycling in the OER region, but also by chemical operation. In situ Raman measurements clarified that chemical operation had a lower rate of surface amorphization than electrochemical operation. On the other hand, the leaching behavior of A-site cations was comparable between chemical and electrochemical operations. Since the OER activity of BSCF was stabilized by saturating the electrolyte with Ba2+, “chemical” A-site leaching was key to inducing the time-course OER enhancement on perovskite electrocatalysts. Based on these results, we provide a fundamental understanding of the role of chemical operation in the OER properties of perovskites.


Author(s):  
Oyunbileg Galindev ◽  
Tatsuya Takeguchi ◽  
Md. Mijanur Rahman

The high cost and limited availability of the precious metal catalysts required for catalysing the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in metal–air batteries restrict the marketing of these clean energy technologies.


Sign in / Sign up

Export Citation Format

Share Document