A discovery of field-controlling selective adsorption for micro ZnO rods with unexpected piezoelectric catalytic performance

2021 ◽  
Vol 545 ◽  
pp. 149032
Author(s):  
Fengping Peng ◽  
Haozhen Li ◽  
Wanxin Xu ◽  
Huihua Min ◽  
Zhenxuan Li ◽  
...  
2021 ◽  
Author(s):  
Yu Liu ◽  
Yan Wang ◽  
Xiao-Sa Zhang ◽  
Wen-Ze Li ◽  
Ai-Ai Yang ◽  
...  

Abstract 3D metal-organic frameworks (MOFs) can be appropriate templates for the fabrication of nanomaterials due to they have active sites exposed on the channel or surface, which thus provide them with improved catalytic performance. In this study, a 3D cobalt-based MOF [Co(H2bpta)]n (Co-MOF), where H4bpta denotes 2,2′,4,4′-biphenyltetracarboxylic acid, has been constructed with the use of a ligand with a high carbon content. On this basis, a 2D magnetic carbon-coated cobalt nanoparticle composite (C@Co) was prepared by using the title MOF. Magnetic C@Co can readily absorb dye from the solution and can thus act as an inexpensive and fast-acting adsorbent. Moreover, we have explored the adsorption isotherms, kinetics and thermodynamics of the anion dyes in detail. The adsorption capacity of the C@Co for investigated methyl orange (MO) and congo red (CR) dyes were 773.48 and 495.66 mg g− 1, respectively. It is noteworthy that MO adsorption is higher in existing materials. Thermodynamic studies suggest that the adsorption processes are spontaneous and exothermic. This study opens a new insight into the synthesis and application of carbon-based materials that enable the selective removal of organic dyes.


2017 ◽  
Vol 409 ◽  
pp. 102-110 ◽  
Author(s):  
Bilel Chouchene ◽  
Tahar Ben Chaabane ◽  
Kevin Mozet ◽  
Emilien Girot ◽  
Serge Corbel ◽  
...  

Author(s):  
J.A. Panitz

The first few atomic layers of a solid can form a barrier between its interior and an often hostile environment. Although adsorption at the vacuum-solid interface has been studied in great detail, little is known about adsorption at the liquid-solid interface. Adsorption at a liquid-solid interface is of intrinsic interest, and is of technological importance because it provides a way to coat a surface with monolayer or multilayer structures. A pinhole free monolayer (with a reasonable dielectric constant) could lead to the development of nanoscale capacitors with unique characteristics and lithographic resists that surpass the resolution of their conventional counterparts. Chemically selective adsorption is of particular interest because it can be used to passivate a surface from external modification or change the wear and the lubrication properties of a surface to reflect new and useful properties. Immunochemical adsorption could be used to fabricate novel molecular electronic devices or to construct small, “smart”, unobtrusive sensors with the potential to detect a wide variety of preselected species at the molecular level. These might include a particular carcinogen in the environment, a specific type of explosive, a chemical agent, a virus, or even a tumor in the human body.


2019 ◽  
Vol 9 (3) ◽  
pp. 811-821 ◽  
Author(s):  
Zhao-Meng Wang ◽  
Li-Juan Liu ◽  
Bo Xiang ◽  
Yue Wang ◽  
Ya-Jing Lyu ◽  
...  

The catalytic activity decreases as –(SiO)3Mo(OH)(O) > –(SiO)2Mo(O)2 > –(O)4–MoO.


2020 ◽  
Vol 8 (35) ◽  
pp. 18207-18214
Author(s):  
Dongbo Jia ◽  
Lili Han ◽  
Ying Li ◽  
Wenjun He ◽  
Caichi Liu ◽  
...  

A novel, rational design for porous S-vacancy nickel sulfide catalysts with remarkable catalytic performance for alkaline HER.


2019 ◽  
Author(s):  
M. Alexander Ardagh ◽  
Manish Shetty ◽  
Anatoliy Kuznetsov ◽  
Qi Zhang ◽  
Phillip Christopher ◽  
...  

Catalytic enhancement of chemical reactions via heterogeneous materials occurs through stabilization of transition states at designed active sites, but dramatically greater rate acceleration on that same active site is achieved when the surface intermediates oscillate in binding energy. The applied oscillation amplitude and frequency can accelerate reactions orders of magnitude above the catalytic rates of static systems, provided the active site dynamics are tuned to the natural frequencies of the surface chemistry. In this work, differences in the characteristics of parallel reactions are exploited via selective application of active site dynamics (0 < ΔU < 1.0 eV amplitude, 10<sup>-6</sup> < f < 10<sup>4</sup> Hz frequency) to control the extent of competing reactions occurring on the shared catalytic surface. Simulation of multiple parallel reaction systems with broad range of variation in chemical parameters revealed that parallel chemistries are highly tunable in selectivity between either pure product, even when specific products are not selectively produced under static conditions. Two mechanisms leading to dynamic selectivity control were identified: (i) surface thermodynamic control of one product species under strong binding conditions, or (ii) catalytic resonance of the kinetics of one reaction over the other. These dynamic parallel pathway control strategies applied to a host of chemical conditions indicate significant potential for improving the catalytic performance of many important industrial chemical reactions beyond their existing static performance.


2014 ◽  
Vol 29 (2) ◽  
pp. 124-130 ◽  
Author(s):  
Yu-Cheng DU ◽  
Guang-Wei ZHENG ◽  
Qi MENG ◽  
Li-Ping WANG ◽  
Hai-Guang FAN ◽  
...  

2010 ◽  
Vol 31 (4) ◽  
pp. 429-434
Author(s):  
Ming ZHAO ◽  
Hairong WANG ◽  
Shanhu CHEN ◽  
Yanling YAO ◽  
Maochu GONG ◽  
...  

2014 ◽  
Vol 32 (8) ◽  
pp. 1400-1404
Author(s):  
Xia LI ◽  
Xiazhen YANG ◽  
Haodong TANG ◽  
Huazhang LIU

Sign in / Sign up

Export Citation Format

Share Document