7A novel moisture-controlled siloxane-modified hyperbranched waterborne polyurethane for durable superhydrophobic coatings

2022 ◽  
pp. 152446
Author(s):  
Yuting Zhao ◽  
Tonghui Hao ◽  
Wei Wu ◽  
Yuan Meng ◽  
Xianwu Cao ◽  
...  
2021 ◽  
Vol 84 ◽  
pp. 86-96
Author(s):  
Hongpeng Zheng ◽  
Li Liu ◽  
Fandi Meng ◽  
Yu Cui ◽  
Zhong Li ◽  
...  

2021 ◽  
pp. 102107
Author(s):  
Yuan Chen ◽  
Zhengyang Yu ◽  
Hale Oguzlu ◽  
Jungang Jiang ◽  
MiJung Cho ◽  
...  

2021 ◽  
Vol 28 (7) ◽  
Author(s):  
Wenqi Xian ◽  
Jie Yuan ◽  
Zhengbin Xie ◽  
Wei Ou ◽  
Xiaoxuan Liu ◽  
...  

2021 ◽  
pp. 2002111
Author(s):  
Calen J. Leverant ◽  
Yifan Zhang ◽  
Maria A. Cordoba ◽  
Sin‐Yen Leo ◽  
Nilesh Charpota ◽  
...  

2021 ◽  
Vol 154 ◽  
pp. 106156
Author(s):  
Lucas Dall Agnol ◽  
Fernanda Trindade Gonzalez Dias ◽  
Heitor Luiz Ornaghi ◽  
Marco Sangermano ◽  
Otávio Bianchi

Author(s):  
Cintia Meiorin ◽  
Selina L. Scherzer ◽  
Verónica Mucci ◽  
Daniel G. Actis ◽  
Pedro Mendoza Zelis ◽  
...  

2020 ◽  
Author(s):  
Chi Zhang ◽  
Jianxiong Wang ◽  
Yujie Xie ◽  
Li Wang ◽  
Lishi Yang ◽  
...  

Abstract Guided bone regeneration (GBR) membrane has been used to improve functional outcomes for periodontal regeneration. However, few studies have focused on the biomimetic membrane mimicking the vascularization of the periodontal membrane. This study aimed to fabricate waterborne polyurethane (WPU) fibrous membranes loaded fibroblast growth factor-2 (FGF-2) via emulsion electrospinning, which can promote regeneration of periodontal tissue via the vascularization of the biomimetic GBR membrane. A biodegradable WPU was synthesized by using lysine and dimethylpropionic acid as chain extenders according to the rule of green chemical synthesis technology. The WPU fibers with FGF-2 was fabricated via emulsion electrospinning. The results confirmed that controlled properties of the fibrous membrane had been achieved with controlled degradation, suitable mechanical properties and sustained release of the factor. The immunohistochemical expression of angiogenic-related factors was positive, meaning that FGF-2 loaded in fibers can significantly promote cell vascularization. The fiber scaffold loaded FGF-2 has the potential to be used as a functional GBR membrane to promote the formation of extraosseous blood vessels during periodontal repairing.


Sign in / Sign up

Export Citation Format

Share Document