high solid
Recently Published Documents


TOTAL DOCUMENTS

727
(FIVE YEARS 217)

H-INDEX

44
(FIVE YEARS 10)

2022 ◽  
Vol 327 ◽  
pp. 238-243
Author(s):  
Da Quan Li ◽  
Xiao Kang Liang ◽  
Fan Zhang ◽  
Song Chen ◽  
Fan Zhang ◽  
...  

The Rheo-diecast process has been rapidly developed and increasingly used in China in the recent 5 years. The high solid fraction (solid content close to 50%) rheo-diecast components were commercially used in the transportation markets mainly because of lightweight. The mechanical properties of the high solid fraction rheo-diecast components are obviously superior than that of the conventional liquid diecast parts. The defects such as oxide, gas entrapment, shrinkage porosities are well prevented in the high solid fraction rheo-diecast parts. The high solid fraction rheo-diecast parts can be fully T6 heat treated. A comparison between high solid fraction rheo-diecast part and conventional liquid diecast part will be described in detail. The low solid fraction (solid content 5-20%) rheo-diecast components were widely used in the 5G communication markets. The future perspectives of Rheo-diecast process will be described at last. 1. Cost reduction. 2. Production consistency. 3. New Rheo-diecast alloys development. 4. Numerical simulation of Rheological filling.


2022 ◽  
Vol 175 ◽  
pp. 114253
Author(s):  
Eloísa Rochón ◽  
María Noel Cabrera ◽  
Valentina Scutari ◽  
Matías Cagno ◽  
Abigail Guibaud ◽  
...  

2021 ◽  
Author(s):  
Prabaharan Graceraj Ponnusamy ◽  
Suraj Sharma ◽  
Sudhagar Mani

Abstract The increasing demand for cellulose nanofibrils (CNF) necessitates the development of novel processes to produce high-solid content and consistent quality nanofibrils. In this study, we investigated the combination of mechanical and chemical pretreatment methods (carboxymethylcellulose, CMC dispersion, and sodium hydroxide, NaOH swelling with ball milling) for cellulose fibers followed by high-pressure homogenization to evaluate the CNF characteristics. The carboxymethylcellulose (CMC) dispersion with 75 min ball milling and NaOH swelling with 15, 45, and 75 min ball milling of cellulose slurry reduced the fiber dimensions by up to 90% that eased the fibrillation to produce about 6% solid content CNF during high-pressure homogenization. The characterization of CNF hydrogels produced from pretreated samples revealed that they had an average fibril width of less than 30 nm with good dispersion stability. The CMC dispersion and NaOH swelling with ball milling of cellulose slurry did not significantly affect the chemical structure and the crystallinity of CNF hydrogels. On the other hand, the tensile strength of all the pretreated CNF samples was increased up to 105±14 MPa when compared with that of the control sample (58±6 MPa). NaOH treatment has slightly increased the thermal stability of CNF samples over CMC treated and control samples. In conclusion, short fibers generated by mild alkaline pretreatment with ball milling followed by high-pressure homogenization of cellulose fibers can produce the consistent quality CNF with high solid content and tensile strengths for various industrial applications.


2021 ◽  
pp. 126465
Author(s):  
Isabel Galan ◽  
Bettina Purgstaller ◽  
Cyrill Grengg ◽  
Bernhard Müller ◽  
Martin Dietzel

2021 ◽  
Author(s):  
Zhiwei Song ◽  
Xuechen Wen ◽  
Tao Sheng

Abstract Decomposed the dense structure of lignocellulosic feedstocks and hydrolysis lignocellulose into monosaccharide were essential prerequisite for bio-energy production at this level. In this study, a cellulosic fungi Aspergillus fumigatus CLL was conducted to pretreated the corn stalks under high/low solid loading culture to enhanced the cellulase saccharification performance. The results indicated that A. fumigatus CLL decomposed the corn stalks effectively under high/low solid loading culture, what’s more, A. fumigatus CLL completed the T. reesei cellulase system and promoted the corn stalks saccharification performance. 25.2% lignin was degraded after A. fumigatus CLL treated just for two day under low solid loading culture with holocellulose loss less than 10%. Meanwhile, the β-glucosidase of A. fumigatus CLL complemented the incomplete cellulase system of T. reesei, the maximum saccharification ratio of sample saccharified by T. reesei cellulase combined A. fumigatus CLL was comparable with the sample saccharified by commercial cellulase. Compared with raw corn stalks, the saccharification ratio of pretreated sample increased 3.1-3.4 fold. These results demonstrated that A. fumigatus CLL can be used for pretreatment of lignocellulosic materials to enhanced the saccharification performance.


Sign in / Sign up

Export Citation Format

Share Document