scholarly journals The metabolic rate response to feed withdrawal in Atlantic salmon post-smolts

Aquaculture ◽  
2020 ◽  
Vol 529 ◽  
pp. 735690
Author(s):  
Malthe Hvas ◽  
Lars Helge Stien ◽  
Frode Oppedal
2021 ◽  
Author(s):  
Jenni M. Prokkola ◽  
Eirik R Åsheim ◽  
Sergey Morozov ◽  
Paul Bangura ◽  
Jaakko Erkinaro ◽  
...  

1. The physiological underpinnings of life history adaptations in ectotherms are not well understood. Theories suggest energy metabolism influences life history variation via modulation of resource acquisition. However, the genetic basis of this relation and its dependence on ecological conditions, such as food availability, have rarely been characterized, despite being critical to predicting the responses of populations to environmental changes. 2. The Atlantic salmon (Salmo salar) is an emerging wild model species for addressing these questions; strong genetic determination of age-at-maturity at two unlinked genomic regions (vgll3 and six6) enables the use of complex experimental designs and tests of hypotheses on the physiological and genetic basis of life-history trait variation. 3. In this study, we crossed salmon to obtain individuals with all combinations of late and early maturation genotypes for vgll3 and six6 within full-sib families. Using more than 250 juveniles in common garden conditions, we tested (i) whether metabolic phenotypes (i.e., standard and maximum metabolic rates, and absolute aerobic scope) were correlated with the age-at-maturity genotypes and (ii) if high vs. low food availability modulated the relationship. 4. We found that salmon with vgll3 early maturation genotype had a higher aerobic scope and maximum metabolic rate, but not standard metabolic rate, compared to salmon with vgll3 late maturation genotype. This suggests that physiological or structural pathways regulating maximum oxygen supply or demand are potentially important for the determination of age-at-maturity in Atlantic salmon. 5. Vgll3 and six6 exhibited physiological epistasis, whereby maximum metabolic rate significantly decreased when late maturation genotypes were present concurrently in both loci compared to other genotype combinations. 6. The growth of the feed restricted group decreased substantially compared to the high food group. However, the effects of life-history genomic regions were similar in both feeding regimes, indicating a lack of genotype-by-environment interactions. 7. Our results indicate that aerobic performance of juvenile salmon may affect their age-at-maturity. The results may help to better understand the mechanistic basis of life-history variation, and the metabolic constrains on life-history evolution.


2018 ◽  
Vol 9 (1) ◽  
pp. 212-222 ◽  
Author(s):  
Grethe Robertsen ◽  
Donald Reid ◽  
Sigurd Einum ◽  
Tonje Aronsen ◽  
Ian A. Fleming ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Andrew T Wood ◽  
Sarah J Andrewartha ◽  
Nicholas G Elliott ◽  
Peter B Frappell ◽  
Timothy D Clark

Abstract Hypoxia in aquatic ecosystems is becoming increasingly prevalent, potentially reducing fish performance and survival by limiting the oxygen available for aerobic activities. Hypoxia is a challenge for conserving and managing fish populations and demands a better understanding of the short- and long-term impacts of hypoxic environments on fish performance. Fish acclimate to hypoxia via a variety of short- and long-term physiological modifications in an attempt to maintain aerobic performance. In particular, hypoxia exposure during early development may result in enduring cardio-respiratory modifications that affect future hypoxia acclimation capacity, yet this possibility remains poorly investigated. We incubated Atlantic salmon (Salmo salar) in normoxia (~100% dissolved oxygen [DO, as percent air saturation]), moderate hypoxia (~63% DO) or cyclical hypoxia (100–25% DO daily) from fertilization until 113 days post-fertilization prior to rearing all groups in normoxia for a further 8 months. At ~11 months of age, subsets of each group were acclimated to hypoxia (50% DO) for up to 44 days prior to haematology, aerobic metabolic rate and hypoxia tolerance measurements. Hypoxia exposure during incubation (fertilization to 113 days post-fertilization) did not affect the haematology, aerobic performance or hypoxia tolerance of juvenile salmon in later life. Juveniles acclimated to hypoxia increased maximum aerobic metabolic rate and aerobic scope by ~23 and ~52%, respectively, when measured at 50% DO but not at 100% DO. Hypoxia-incubated juveniles also increased haematocrit and haemoglobin concentration but did not affect acute hypoxia tolerance (critical oxygen level and DO at LOE). Thus, while Atlantic salmon possess a considerable capacity to physiologically acclimate to hypoxia by improving aerobic performance in low oxygen conditions, we found no evidence that this capacity is influenced by early-life hypoxia exposure.


2013 ◽  
Vol 70 (7) ◽  
pp. 1072-1081 ◽  
Author(s):  
David Beauregard ◽  
Eva Enders ◽  
Daniel Boisclair

Fish that inhabit rivers may experience important daily fluctuations in water temperature. Bioenergetic models have the potential to simulate the effects of such fluctuations on fish growth; however, bioenergetic components are traditionally modeled using fish kept at constant water temperatures. This study tested the hypothesis that circadian fluctuations in water temperature increase the standard metabolic rate of fish. The standard metabolic rate of Atlantic salmon parr (Salmo salar; 5.96–36.20 g wet blotted mass) estimated at 20 ± 0.5 °C was 25% to 32% lower for fish held at a relatively constant water temperature (20.2 ± 0.5 °C) than for fish maintained under fluctuating thermal regimes (19.8 ± 2.0 °C; 19.5 ± 3.0 °C). This study suggests that a rise in standard metabolic rate may explain how temperature fluctuations affect fish growth. It also indicates that the traditional approach used to estimate and model components of the bioenergetic equation may substantially underestimate the standard metabolic rate of fish that are subjected to such fluctuations.


Sign in / Sign up

Export Citation Format

Share Document