standard metabolic rate
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 49)

H-INDEX

46
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Eirik R. Åsheim ◽  
Jenni M. Prokkola ◽  
Sergey Morozov ◽  
Tutku Aykanat ◽  
Craig R. Primmer

2021 ◽  
Vol 8 ◽  
Author(s):  
Yiqiu Fu ◽  
Zonghang Zhang ◽  
Zhen Zhang ◽  
Fengyuan Shen ◽  
Xiuwen Xu ◽  
...  

Animal personality refers to individual behavioral and physiological differences that are consistent over time and across context. Recently, the fish personality has gained increasing attention, especially from the perspective of aquaculture production. Here, we used an important aquaculture species, black rockfish Sebastes schlegelii, as the target animal, and conducted a series of experiments to explore the relationships among fish boldness, aggressiveness, locomotor activity, opercular beat rate, standard metabolic rate, and cortisol level. Generally, the results showed that the boldness of black rockfish was significantly, positively correlated with fish aggressiveness, stressed locomotor activity, and standard metabolic rate, while was negatively correlated with stressed opercular beat rate. Bold fish had significantly higher aggressiveness, standard metabolic rate, and stressed locomotor activity but lower stressed opercular beat rate. However, there were no significant correlations between boldness and basal locomotor activity or between boldness and basal cortisol level. These results preliminarily constructed the behavioral and physiological spectrum of black rockfish in the context of fish personality and clearly indicated that the boldness could be used as a discrimination tool to predict fish aggressiveness and metabolic rate, which may have valuable applications for decreasing fish harmful aggression and increasing fish welfare in the aquaculture industry.


2021 ◽  
Author(s):  
Sarah Howald ◽  
Marta Moyano ◽  
Amélie Crespel ◽  
Louise Cominassi ◽  
Guy Claireaux ◽  
...  

The aim of this study was to investigate the effect of ocean acidification (OA) and warming (OW) as well as the transgenerational effect of OA on larval and juvenile growth and metabolism of a large economically important fish species with a long generation time. Therefore we incubated European sea bass from Brittany (France) for two generations (>5 years in total) under current and predicted OA conditions (PCO2: 650 and 1700 μatm). In the F1 generation both OA condition were crossed with OW (temperature: 15-18 °C and 20-23 °C). We found that OA alone did not affect larval or juvenile growth and OW increased developmental time and growth rates, but OAW decreased larval size at metamorphosis. Larval routine metabolic rate (RMR) and juvenile standard metabolic rate (SMR) were significantly lower in cold compared to warm conditioned fish and also lower in F0 compared to F1 fish. We did not find any effect of OA on RMR or SMR. Juvenile PO2crit was not affected by OA, OW or OAW in both generations. We discuss the potential underlying mechanisms resulting in beneficial effects of OW on F1 larval growth and RMR and in resilience of F0 and F1 larvae and juveniles to OA, but on the other hand resulting in vulnerability of F1, but not F0 larvae to OAW. With regard to the ecological perspective, we conclude that recruitment of larvae and early juveniles to nursery areas might decrease under OAW conditions but individuals reaching juvenile phase might benefit from increased performance at higher temperatures.


Fishes ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 58
Author(s):  
Fengyuan Shen ◽  
Zonghang Zhang ◽  
Yiqiu Fu ◽  
Zhen Zhang ◽  
Xin Sun ◽  
...  

Fish often undergo food shortages in nature, especially for juveniles that are relatively vulnerable in most aspects. Therefore, the effects of food deprivation on fish behavior and physiology are worth exploring. Here, we investigated the behavioral and metabolic adaptations of the juvenile black rockfish Sebastes schlegelii to different durations of food deprivation. In this study, three treatments were set: control group, short-term food deprivation (STFD) group, and long-term food deprivation (LTFD) group. The rearing lasted for six weeks. During this period, videos were recorded three times per week to assess the locomotor activity and aggression. After this, the fishes’ boldness, neophobia, and aggressiveness were assessed using different behavioral assessment devices, while the standard metabolic rate (SMR) was measured by flow-type respirometry. In general, the values of the four indicators (swimming time, the number of turns, movement number, and attack number) for the STFD group were significantly higher than those for the control and LTFD group during the same period of rearing. In a subsequent personality assessment, the STFD group was observed to be significantly bolder in an assessment measuring boldness than the control and LTFD group (indicated by time in the circle, swimming time, number of times through the circle, and frequency in the circle). The LTFD group was observed to be more exploratory in the assessment of neophobia (indicated by duration in the exploratory area, distance from novelty item, and frequency of stay in the exploratory area). Indeed, the LTFD group was observed to be significantly less aggressive in the assessment of aggressiveness than the control and STFD group (indicated by attack number, attack range frequency, first attack, and winner). SMR was noted to be significantly higher in the STFD group than in the control and LTFD group. In conclusion, this study firstly reported the effects of food deprivation duration on the personalities of black rockfish, as well as the behavioral and physiological mechanisms. Thus, we hope to provide insights into the work of stock enhancement.


Author(s):  
Matilda Andersson ◽  
Kristin Scharnweber ◽  
Peter Eklöv

1. Resource polymorphism is common across taxa and can result in alternate ecotypes with specific morphologies, feeding modes, and behaviours that increase performance in a specific habitat. This can result in high intraspecific variation in the expression of specific traits and the extent to which these traits are correlated within a single population. Although metabolic rate influences resource aquisition and the overall pace of life of individuals it is not clear how metabolic rate interact with the larger suite of traits to ultimately determine individual fitness. 2. We examined the relationship between metabolic rates and the major differences (habitat use, morphology, and resource use) between littoral and pelagic ecotypes of European perch (Perca fluviatilis) from a single lake in Central Sweden. 3. Standard metabolic rate (SMR) was significantly higher in pelagic perch but did not correlate with resource use or morphology. Maximum metabolic rate (MMR) was not correlated with any of our explanatory variables or with SMR. Aerobic scope (AS) showed the same pattern as SMR, differing across habitats, but contrary to expectations, was lower in pelagic perch. 4. This study helps to establish a framework for future experiments further exploring the drivers of intraspecific differences in metabolism. In addition, since metabolic rates scale with temperature and determine predator energy requirements, our observed differences in SMR across habitats will help determine ecotype-specific vulnerabilities to climate change and differences in top-down predation pressure across habitats.


Author(s):  
Emily A. Hardison ◽  
Krista Kraskura ◽  
Jacey Van Wert ◽  
Tina Nguyen ◽  
Erika J. Eliason

Thermal acclimation is a key process enabling ectotherms to cope with temperature change. To undergo a successful acclimation response, ectotherms require energy and nutritional building blocks obtained from their diet. However, diet is often overlooked as a factor that can alter acclimation responses. Using a temperate omnivorous fish, opaleye (Girella nigricans), as a model system, we tested the hypotheses that 1) diet can impact the magnitude of thermal acclimation responses and 2) traits vary in their sensitivity to both temperature acclimation and diet. We fed opaleye a simple omnivorous diet (ad libitum Artemia sp. and Ulva sp.) or a carnivorous diet (ad libitum Artemia sp.) at two ecologically relevant temperatures (12 and 20°C) and measured a suite of whole animal (growth, sprint speed, metabolism), organ (cardiac thermal tolerance), and cellular-level traits (oxidative stress, glycolytic capacity). When opaleye were offered two diet options compared to one, they had reduced cardiovascular thermal performance and higher standard metabolic rate under conditions representative of the maximal seasonal temperature the population experiences (20°C). Further, sprint speed and absolute aerobic scope were insensitive to diet and temperature, while growth was highly sensitive to temperature but not diet, and standard metabolic rate and maximum heart rate were sensitive to both diet and temperature. Our results reveal that diet influences thermal performance in trait-specific ways, which could create diet trade-offs for generalist ectotherms living in thermally variable environments. Ectotherms that alter their diet may be able to regulate their performance at different environmental temperatures.


NeoBiota ◽  
2021 ◽  
Vol 69 ◽  
pp. 29-50
Author(s):  
Josef Wanzenböck ◽  
Mathias Hopfinger ◽  
Sylvia Wanzenböck ◽  
Lukas Fuxjäger ◽  
Hans Rund ◽  
...  

The European weatherfish Misgurnus fossilis (Linnaeus, 1758) is a threatened freshwater species in large parts of Europe and might come under pressure from currently establishing exotic weatherfish species. Additional threats might arise if those species hybridize which has been questioned in previous research. Regarding the hybridization of M. fossilis × M. anguillicaudatus (Cantor, 1842), we demonstrate that despite the considerable genetic distance between parental species, the estimated long divergence time and different ploidy levels do not represent a postzygotic barrier for hybridization of the European and Oriental weatherfish. The paternal species can be easily differentiated based on external pigment patterns with hybrids showing intermediate patterns. No difference in standard metabolic rate, indicating a lack of hybrid vigour, renders predictions of potential threats to the European weatherfish from hybridization with the Oriental weatherfish difficult. Therefore, the genetic and physiological basis of invasiveness via hybridization remains elusive in Misgurnus species and requires further research. The existence of prezygotic reproductive isolation mechanisms and the fertility of F1 hybrids remains to be tested to predict the potential threats of globally invasive Oriental weatherfish species.


2021 ◽  
Vol 288 (1959) ◽  
pp. 20211509
Author(s):  
Louise C. Archer ◽  
Stephen A. Hutton ◽  
Luke Harman ◽  
W. Russell Poole ◽  
Patrick Gargan ◽  
...  

Metabolism defines the energetic cost of life, yet we still know relatively little about why intraspecific variation in metabolic rate arises and persists. Spatio-temporal variation in selection potentially maintains differences, but relationships between metabolic traits (standard metabolic rate (SMR), maximum metabolic rate (MMR), and aerobic scope) and fitness across contexts are unresolved. We show that associations between SMR, MMR, and growth rate (a key fitness-related trait) vary depending on the thermal regime (a potential selective agent) in offspring of wild-sampled brown trout from two populations reared for approximately 15 months in either a cool or warm (+1.8°C) regime. SMR was positively related to growth in the cool, but negatively related in the warm regime. The opposite patterns were found for MMR and growth associations (positive in warm, negative in the cool regime). Mean SMR, but not MMR, was lower in warm regimes within both populations (i.e. basal metabolic costs were reduced at higher temperatures), consistent with an adaptive acclimation response that optimizes growth. Metabolic phenotypes thus exhibited a thermally sensitive metabolic ‘floor’ and a less flexible metabolic ‘ceiling’. Our findings suggest a role for growth-related fluctuating selection in shaping patterns of metabolic variation that is likely important in adapting to climate change.


2021 ◽  
Author(s):  
Michael Oellermann ◽  
Quinn P. Fitzgibbon ◽  
Samantha Twiname ◽  
Gretta T. Pecl

Abstract Marine species not only suffer from direct effects of warming oceans but also indirectly via the emergence of novel species interactions. While metabolic adjustments can be crucial to improve resilience to warming, it is largely unknown if this improves performance relative to novel competitors. We aimed to identify if spiny lobsters – inhabiting a global warming and species re-distribution hotspot - align their metabolic performance to improve resilience to both warming and novel species interactions. We measured metabolic and escape capacity of two Australian spiny lobsters, resident Jasus edwardsii and the range-shifting Sagmariasus verreauxi, acclimated to current average- (14.0°C), current summer- (17.5°C) and projected future summer- (21.5°C) habitat temperatures. We found that both species decreased their standard metabolic rate with increased acclimation temperature, while sustaining their scope for aerobic metabolism. However, the resident lobster showed reduced anaerobic escape performance at warmer temperatures and failed to match the metabolic capacity of the range-shifting lobster. We conclude that although resident spiny lobsters optimise metabolism in response to seasonal and future temperature changes, they may be unable to physiologically outperform their range-shifting competitors. This highlights the critical importance of exploring direct as well as indirect effects of temperature changes to understand climate change impacts.


Author(s):  
Eirik R Asheim ◽  
Jenni M Prokkola ◽  
Sergey Morozov ◽  
Tutku Aykanat ◽  
Craig R Primmer

Atlantic salmon (Salmo salar) is a species with diverse life-history strategies, to which the timing of maturation contributes considerably. Recently, the genome region including the gene vgll3 has gained attention as a locus with a large effect on salmon maturation timing, and recent studies on the vgll3 locus in salmon have indicated that its effect might be mediated through body condition and accumulation of adipose tissue. However, the cellular and physiological pathways leading from vgll3 genotype to phenotype are still unknown. Standard metabolic rate is a potentially important trait for resource acquisition and assimilation and we hypothesized that this trait, being a proxy for the maintenance energy expenditure of an individual, could be an important link in the pathway from vgll3 genotype to maturation-timing phenotype. As a first step to studying links between vgll3 and the metabolic phenotype of Atlantic salmon, we measured the standard metabolic rate of 150 first year Atlantic salmon juveniles of both sexes, originating from 14 different families with either late maturing or early maturing vgll3 genotypes. No significant difference in mass-adjusted standard metabolic rate was detected between individuals with different vgll3 genotypes, indicating that juvenile salmon of different vgll3 genotypes have similar maintenance energy requirements in the experimental conditions used and that the effects of vgll3 on body condition and maturation are not strongly related to maintenance energy expenditure in either sex at this life stage.


Sign in / Sign up

Export Citation Format

Share Document