Hydrodynamic performance of a semi-submersible offshore fish farm with a single point mooring system in pure waves and current

2020 ◽  
Vol 90 ◽  
pp. 102075 ◽  
Author(s):  
Xiao-Hua Huang ◽  
Hai-Yang Liu ◽  
Yu Hu ◽  
Tai-Ping Yuan ◽  
Qi-You Tao ◽  
...  
Author(s):  
Lin Li ◽  
Zhiyu Jiang ◽  
Andreas Vangdal Høiland ◽  
Muk Chen Ong

The aquaculture industry is aiming to move fish farms from nearshore areas to open seas because of many attractive advantages in the open water. However, one major challenge is to design the structure to withstand the environmental loads due to wind, waves, and currents. The purpose of this paper is to study a vessel-shaped fish farm concept for open sea applications. The structure includes a vessel-shaped hull, a mooring system, and fish cages. The shape of the hull minimizes the wave loads coming from the bow, and the single-point mooring system is connected to the turret at the vessel bow. Such a system allows the whole fish farm to rotate freely about the turret, reduces the environmental loads on the structure and increases the spread area of fish wastes. A basic geometry of the vessel hull was considered and the hydrodynamic properties were obtained from the frequency-domain (FD) analysis. A mooring system with six mooring lines was designed to avoid possible interactions with the fish cages. Time-domain (TD) simulations were performed by coupling the hull with the mooring system. A simplified rigid model of the fish cages was considered. The global responses of the system and the mooring line loads were compared under various wave and current conditions. The effects due to misalignment of wave and current directions on the responses were discussed. Finally, the responses using flexible and rigid net models were compared under steady current conditions.


Author(s):  
Lin Li ◽  
Zhiyu Jiang ◽  
Muk Chen Ong

The aquaculture industry is aiming to move fish farms from near-shore area to open seas because of many attractive advantages in the open water. However, one major challenge is to design the structure to withstand the environmental loads due to wind, waves and current. The purpose of this paper is to study a vessel-shaped fish farm concept for open sea applications. The structure includes a vessel-shaped hull, a mooring system and fish cages. The shape of the hull minimizes the wave loads coming from the bow, and the single-point mooring system is connected to the turret at the vessel bow. Such a system allows the whole fish farm to rotate freely about the turret, reduces the environmental loads on the structure and increases the spread area of fish wastes. A basic geometry of the vessel hull was considered and the hydrodynamic properties were obtained from frequency domain analysis. A preliminary mooring system was designed to avoid possible interactions with the fish cages. Time domain simulations were performed by coupling the hull with the mooring system. A simplified rigid model of the fish cages was considered. The global responses of the system and the mooring line loads were compared in various waves and current conditions. The effects due to misalignment of waves and current directions on the responses were also studied.


Author(s):  
Lin Li ◽  
Zhiyu Jiang ◽  
Jungao Wang ◽  
Muk Chen Ong

A vessel-shaped fish farm concept for open sea applications has been proposed recently. The whole system consists of a vessel-shaped floater, fish cages positioned longitudinally along the floater, and a single-point mooring system. The whole system weathervanes; this feature increases the spread area for the fish waste. However, the downstream cages may experience reduced water exchange when the vessel is parallel to the currents. This situation may jeopardize the fish health. A dynamic positioning (DP) system may be necessary to improve the flow conditions. This paper investigates the misalignment angle between the heading of the vessel-shaped fish farm and the currents under combined wave and current conditions. The misalignment angle is critical for the estimation of the DP system consumption. A numerical model of the fish farm system with flexible nets is developed. Current reduction factors are included to account for the flow velocity reductions between the net panels. The heading of the system is obtained by finding the equilibrium condition of the whole system under each combined wave and current condition. An integrated method using metamodels is proposed and applied for the prediction of the misalignment angle for a reference site. The probability distribution of the misalignment angle between the vessel heading and the currents is calculated using the Kriging metamodel for the reference site. Based on the prediction, the requirement for the DP system to improve the flow condition in the fish cages is discussed.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Lin Li ◽  
Zhiyu Jiang ◽  
Jungao Wang ◽  
Muk Chen Ong

Recently, the concept of a vessel-shaped fish farm was proposed for open sea applications. The fish farm comprises a vessel-shaped floater, five fish cages, and a single-point mooring system. Such a system weathervanes, and this feature increases the spread area of fish waste. Still, the downstream cages may experience decreased exchange of water flow when the vessel heading is aligned with the current direction, and fish welfare may be jeopardized. To ameliorate the flow conditions, a dynamic positioning (DP) system may be required, and its power consumption should relate to the heading misalignment. This paper proposes an integrated method for predicting the heading misalignment between the vessel-shaped fish farm and the currents under combined waves and currents. A numerical model is first established for the fish farm system with flexible nets. Current reduction factors are included to address the reduction in flow velocity between net panels. The vessel heading is obtained by finding the equilibrium condition of the whole system under each combined wave and current condition. Then, the Kriging metamodel is applied to capture the relation between the misalignment angle and environmental variables, and the probability distribution of this misalignment angle is estimated for a reference site. Finally, the requirement for the DP system to improve the flow condition in the fish cages is discussed.


Author(s):  
Huilong Ren ◽  
Jian Zhang ◽  
Guoqing Feng ◽  
Hui Li ◽  
Chenfeng Li

Coupled dynamic analysis between floating marine structures and flexible members such as mooring lines and risers, is a challenging work in the ocean engineering field. Coupled analysis on mooring-buoy interactions has been paid more and more concern for recent years. For floating offshore structures at sea, the motions driven by environmental loads are inevitable. The movement of mooring lines occurs due to the excitation on the top by floating structures. Meanwhile the lines restrict the buoy’s motion by forces acting on the fareleads. Positioning is the main function of mooring system, its orientation effects can’t be ignored for floating structures such as semi-submersible, FPS, and TLP, especially when the buoy’s equilibrium position shifting to another place. Similar as hydrostatic restoring forces, mooring force related with the buoy’s displacement can be transformed into mooring stiffness and can be added in the differential equations of motion, which is calculated at its equilibrium point. For linear hydrodynamic analysis in frequency domain, any physical quantity should be linear or be linearized, however mooring stiffness is nonlinear in essence, so the tangent or differential stiffness is used. Steel chains are widely used in catenary mooring system. An explicit formulation of catenary mooring stiffness is derived in this article, which consists of coupled relations between horizontal and vertical mooring forces. The effects of changing stiffness due to the shift of equilibrium position on the buoy’s hydrodynamic performance are investigated.


1999 ◽  
Vol 121 (2) ◽  
pp. 71-76 ◽  
Author(s):  
K. P. Thiagarajan ◽  
S. Finch

Turret-moored floating production storage and offloading (FPSO) vessels have found application in several offshore oil and gas fields in Australia’s North West Shelf (NWS). These vessels are either custom-built or converted tankers, with an internal or external turret. The position of an internal turret is decided based on a number of design considerations, primarily, available deck and interior space, and weathervaning capabilities. It is known that turret position can influence vertical motions and accelerations of a vessel, but this factor has not been given much importance, in comparison with the effects on the horizontal plane motions, primarily surge. This paper presents the results of a pilot study conducted at the Australian Maritime College, Tasmania, to study the vertical motions of a single-point moored FPSO model in waves, while systematically varying the mooring position across the length of the model. The displacement of the vessel was held constant at 50-percent-loaded condition. A single-point mooring system was designed and implemented on the model to simulate the prototype turret mooring system. Results show that the mooring location significantly affects the vertical motions and accelerations of the vessel. Astern turrets were found to produce higher heave and pitch than other locations tested. Although turrets positioned close to the longitudinal center of gravity produced the lowest overall motions, it is suggested that turret position forward of midships be preferred, as it provides a balance between lowering vertical motions and improving weathervaning characteristics.


2012 ◽  
Vol 256-259 ◽  
pp. 1952-1955
Author(s):  
Ting Guo ◽  
Hong De Qin

The far-flung ocean has abundant resource and the exploitation area of ocean oil and gas is developing from offshore to deepwater and ultra-deepwater following the increase demand for oil and gas resource. Therefore, one of the floating structures for deepwater exploitation is FPSO. The yaw of FPSO is more important problem to solve. This paper use Hydrostar to compute the RAOs, 1st-order and 2nd-order force of FPSO. A comprehensive review is introduced about the research on FPSO hydrodynamic in the world, including the coupling hydrodynamic analysis of deepwater FPSO with the mooring system. The results indicate that the FPSO’s 1st-order force and moment is a little large, however, the RAOs and 2nd-order force and moment are good. The FPSO with single point mooring system can control the displacement of FPSO effectively.


2004 ◽  
Author(s):  
M.H. Krekel ◽  
R. Leeuwenburgh ◽  
W.M. Bishop ◽  
J.F. Davis
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document