Growth of miniature pig parotid cells on biomaterials in vitro

2006 ◽  
Vol 51 (5) ◽  
pp. 351-358 ◽  
Author(s):  
Tao Sun ◽  
Jie Zhu ◽  
Xinlin Yang ◽  
Songlin Wang
Keyword(s):  
2019 ◽  
Vol 98 (9) ◽  
pp. 350-355

Introduction: There is evidence that mesenchymal stem cells (MSCs) could trans-differentiate into the liver cells in vitro and in vivo and thus may be used as an unfailing source for stem cell therapy of liver disease. Combination of MSCs (with or without their differentiation in vitro) and minimally invasive procedures as laparoscopy or Natural Orifice Transluminal Endoscopic Surgery (NOTES) represents a chance for many patients waiting for liver transplantation in vain. Methods: Over 30 millions of autologous MSCs at passage 3 were transplanted via the portal vein in an eight months old miniature pig. The deposition of transplanted cells in liver parenchyma was evaluated histologically and the trans-differential potential of CM-DiI labeled cells was assessed by expression of pig albumin using immunofluorescence. Results: Three weeks after transplantation we detected the labeled cells (solitary, small clusters) in all 10 samples (2 samples from each lobe) but no diffuse distribution in the samples. The localization of CM-DiI+ cells was predominantly observed around the portal triads. We also detected the localization of albumin signal in CM-DiI labeled cells. Conclusion: The study results showed that the autologous MSCs (without additional hepatic differentiation in vitro) transplantation through the portal vein led to successful infiltration of intact miniature pig liver parenchyma with detectable in vivo trans-differentiation. NOTES as well as other newly developed surgical approaches in combination with cell therapy seem to be very promising for the treatment of hepatic diseases in near future.


2007 ◽  
Vol 19 (1) ◽  
pp. 213
Author(s):  
M. R. Park ◽  
I. S. Hwang ◽  
H. J. Moon ◽  
J. H. Shim ◽  
D. H. Kim ◽  
...  

Manipulations of early embryos require that the embryos be placed in vitro. The ability to reproduce in vivo conditions in vitro would greatly facilitate studies on the development of early embryos. A variety of different conditions have been described that result in development of pig embryos from the 1-cell stage to the blastocyst stage in vitro. There is a species-specific cell stage at which the early embryo is very sensitive to in vitro conditions, which generally corresponds to the stage at which the embryo begins producing significant amounts of RNA. The present study was conducted to investigate the relative amounts of apoptotic gene expression in miniature pig NT embryos under culture conditions of different osmolarity. Oocytes were cultured in TCM-199 for 40–44 h at 38.5�C under 5% CO2 in air. Miniature pig ear fibroblast cells were cultured to reach confluency, and the culture was continued for an additional 5–6 days. The NaCl group of embryos was cultured in PZM-3 supplemented with 138 mM NaCl in total concentration (280–320 mOsmol) for the first 2 days, and then cultured in PZM-3 (250–270 mOsmol) for a further 4 days. The control group of embryos was cultured in the PZM-3 for the entire period of in vitro culture. Total RNA samples were prepared from 2 blastocysts using the Roche 1st strand cDNA synthesis kit. Bax and Bcl-xl gene expression of blastocysts was analyzed by real-time RT-PCR. Developemntal rates were analyzed by a GLM procedure of SAS (SAS Institute, Inc., Cary, NC, USA). Relative gene expression was compared by Student's t-test. Blastocyst formation rate in the NaCl group was not different from that in the control group (25.4% and 23.2%, respectively), but the apoptosis rate was significantly lower (P < 0.05) in the NaCl group (1.6%) than in the control (7.1%). The relative abundance of Bax mRNA expression was significantly higher (P < 0.05) in the control group (n = 32) than in the NaCl group (n = 33). However, the relative abundance of Bcl-xl mRNA was significantly higher (P < 0.05) in NaCl group. The relative abundance of Bax/Bcl-xl was significantly higher in the control group than in the NaCl group (P < 0.05). These results indicate that the hypertonic culture condition at the early embryonic stage of miniature pig NT embryos could reduce the frequency of apoptosis through regulating Bax and Bcl-xl gene expression.


2007 ◽  
Vol 19 (1) ◽  
pp. 147
Author(s):  
E. Lee ◽  
K. Song ◽  
Y. Jeong ◽  
S. Hyun

Generally, blastocyst (BL) formation and embryo cell number are used as main parameters to evaluate the viability and quality of in vitro-produced somatic cell nuclear transfer (SCNT) embryos. We investigated whether in vitro development of SCNT pig embryos correlates with in vivo viability after transfer to surrogates. For SCNT, cumulus–oocyte complexes (COCs) were matured in TCM-199 supplemented with follicular fluid, hormones, EGF, cysteine, and insulin for the first 22 h and in a hormone-free medium for 18 h. Three sources of pig skin cells were used as nuclear donor: (1) skin fibroblasts of a cloned piglet that were produced by SCNT of fetal fibroblasts from a Landrace × Yorkshire × Duroc F1 hybrid (LYD), (2) skin fibroblasts of a miniature pig having the human decay accelerating factor gene (hDAF-MP), and (3) skin fibroblasts of a miniature pig with a different strain (MP). MII oocytes were enucleated, subjected to nuclear transfer from a donor cell, electrically fused, and activated 1 h after fusion. SCNT embryos were cultured in a modified NCSU-23 (Park Y et al. 2005 Zygote 13, 269–275) for 6 days or surgically transferred (110–150 fused embryos) into the oviduct of a surrogate that showed standing estrus on the same day as SCNT. Embryos were examined for cleavage and BL formation on Days 2 and 6, respectively (Day 0 = the day of SCNT). BLs were examined for their cell number after staining with Hoechst 33342. Pregnancy was diagnosed by ultrasound 30 and 60 days after embryo transfer. Embryo cleavage was not affected by donor cells (82, 81, and 72% for LYD, hDAF-MP, and MP, respectively), but BL formation was higher (P < 0.05) in hDAF-MP (16%) than in LYD (9%) and MP (6%). MP showed higher (P < 0.05) BL cell number (46 cells/BL) than hDAF-MP (34 cells) but did not show a difference from LYD (37 cells). LYD and MP showed higher pregnancy rates (Table 1) on Days 30 and 60, even though they showed lower BL formation in vitro. Due to a relatively small number of embryo transfers through a limited period, we could not exclude any possible effects by seasonal or operational differences. These results indicated that pregnancy did not correlate with in vitro BL formation of SCNT pig embryos but rather were affected by the source of donor cells. Table 1.In vivo development of somatic cell nuclear transfer pig embryos derived from different sources of donor cells This work was supported by the Research Project on the Production of Bio-organs (No. 200506020601), Ministry of Agriculture and Forestry, Republic of Korea.


2005 ◽  
Vol 7 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Yoichiro Hoshino ◽  
Masaki Uchida ◽  
Yoshiki Shimatsu ◽  
Masashi Miyake ◽  
Yasumitsu Nagao ◽  
...  

2015 ◽  
Vol 27 (1) ◽  
pp. 107
Author(s):  
R. Koppang ◽  
N. R. Mtango ◽  
M. Barcelo-Fimbres ◽  
J. P. Verstegen

Porcine somatic cell nuclear transfer (SCNT) is limited to the same or next day surgical embryo transfer due to poor culture conditions in vitro. In this study, we aimed to overcome this problem by treating SCNT embryos with scriptaid, an inhibitor of histone deacetylase (HDACi) that helps with epigenetic reprogramming of the somatic nuclei. Scriptaid was chosen over other HDACi because it has been shown to improve histone acetylation in the same pattern as that of IVF embryos as well as its low toxicity characteristic (Zhao et al. 2009 Biol. Reprod. 81, 525–530; Zhao et al. 2010 Cell Reprogram. 12, 75–78). An inbred miniature pig fetal fibroblast cell line that is known to give low blastocyst rate in culture was used as a source of donor cells transferred into enucleated oocytes. Traditional SCNT was performed; embryos were fused and chemically activated in 10 µM ionomycin for 5 min and 2 mM DMAP for 3 to 4 h before being transferred into scriptaid. Embryos were treated with 500 nM scriptaid (Zhao et al. 2010) for 18 h and the untreated group was used as control. A total of 806 oocytes were used in 8 replicates. The constructed embryos were cultured in modified porcine zygote medium 5 (mPZM-5) for 7 days at 39°C in 5% O2, 5% CO2, 90% N2 atmosphere. Cleavage rates were assessed at 2.5 days and blastocyst rates at Day 7 after activation. Data were analysed by ANOVA using GLM, and percentages were transformed using arcsin square root using Statistix 10 software (Tallahassee, FL, USA). There were no differences in cleavage rates for control group v. scriptaid (55.3 v. 49.9%; P > 0.1; Table 1). The blastocyst rate per construct showed remarkable increase in the scriptaid treated group compared with the control group (12.8 v. 2.2%; P < 0.01; Table 1). Similarly, a significant effect was observed for blastocyst per embryos cleaved where scriptaid had higher rates compared with control (25.8 v. 5.8%; P < 0.01). These results indicated that improving nuclear reprogramming of miniature porcine SCNT clones by scriptaid treatment enhanced blastocyst production during the in vitro culture of porcine embryos. Table 1.Mean (± s.e.m.) measures of embryonic development of SCNT embryos


2007 ◽  
Vol 19 (1) ◽  
pp. 146
Author(s):  
P. M. Kragh ◽  
Y. Du ◽  
J. Li ◽  
Y. Zhang ◽  
L. Bolund ◽  
...  

Somatic cell nuclear transfer (SCNT) offers the possibility of pig transgenesis. Importantly, genetic manipulations can be performed in cells isolated from special breeds followed by SCNT into enucleated oocytes isolated from slaughterhouse ovaries. In the present study, we established production of Yucatan blastocysts by the handmade cloning (HMC) technique using non-transgenic fibroblasts from the Yucatan miniature pig, and produced transgenic blastocysts using enhanced green fluorescent protein (EGFP)-positive Yucatan fetal fibroblasts. For transgenesis, Yucatan fibroblasts from a 40-day old fetus were transfected with a vector containing an EGFP gene and a neomycin-resistance selection gene by lipofection. Well separated neomycin-resistant colonies were isolated, expanded, and used for HMC. For HMC, cumulus–oocyte complexes were aspirated from ovaries of slaughterhouse sows and matured for 41 h. Subsequently, the cumulus cells were removed in hyaluronidase, and zonae pellucidae were partially digested by incubation in pronase. Oocytes with a visible polar body (PB) were subjected to oriented bisection. Less than half of the cytoplasm adjacent to the PB was removed with a microblade. The remaining parts, i.e. cytoplasts, were used as recipients for embryo reconstruction. Reconstructed embryos were produced by a two-step fusion procedure. At the first step, one cytoplast was fused with one fibroblast in the absence of Ca2+. After one h, the cytoplast-fibroblast pair and another cytoplast were fused and activated simultaneously in the presence of Ca2+, and subsequently cultured in cytochalasin B and cycloheximide for 4 h. The development of reconstructed embryos to the blastocyst stage was determined after 7 days of in vitro culture. When using non-transgenic and EGFP-positive Yucatan fetal fibroblasts, the rate of blastocyst formation (mean � SEM) were 36 � 7% (36/102) and 42 � 7% (32/77), respectively. In conclusion, the HMC technique was very efficient for production of blastocysts of Yucatan miniature pig origin using both non-transgenic and EGFP-positive fetal fibroblasts.


Sign in / Sign up

Export Citation Format

Share Document