scholarly journals Sentiment analysis on Bangla text using extended lexicon dictionary and deep learning algorithms

Array ◽  
2022 ◽  
pp. 100123
Author(s):  
Nitish Ranjan Bhowmik ◽  
Mohammad Arifuzzaman ◽  
M. Rubaiyat Hossain Mondal

In this digitized world, the Internet has become a prominent source to glean various kinds of information. In today’s scenario, people prefer virtual reality instead of one to one communication. The Majority of the population prefers social networking sites to voice themselves through posts, blogs, comments, likes, dislikes. Their sentiments can be found/traced using opinion mining or Sentiment analysis. Sentiment analysis of social media text is a useful technique for identifying peoples’ positive, negative or neutral emotions/sentiments/opinions. Sentiment analysis has gained special attention by researchers from last few years. Traditionally many machine learning algorithms were used to implement it like navie bays, Support Vector Machine and many more. But to overcome the drawbacks of ML in terms of complex classification algorithms different deep learning-based algorithms are introduced like CNN, RNN, and HNN. In this paper, we have studied different deep learning algorithms and intended to propose a deep learning-based model to analyze the behavior of an individual using social media text. Results given by the proposed model can utilize in a range of different fields like business, education, industry, politics, psychology, security, etc.



Author(s):  
O. E. Ojo ◽  
A. Gelbukh ◽  
H. Calvo ◽  
O. O. Adebanji

In this work, a study investigation was carried out using n-grams to classify sentiments with different machine learning and deep learning methods. We used this approach, which combines existing techniques, with the problem of predicting sequence tags to understand the advantages and problems confronted with using unigrams, bigrams and trigrams to analyse economic texts. Our study aims to fill the gap by evaluating the performance of these n-grams features on different texts in the economic domain using nine sentiment analysis techniques and found more insights. We show that by comparing the performance of these features on different datasets and using multiple learning techniques, we extracted useful intelligence. The evaluation involves assessing the precision, recall, f1-score and accuracy of the function output of the several machine learning algorithms proposed. The methods were tested using Amazon, IMDB, Reuters, and Yelp economic review datasets and our comprehensive experiment shows the effectiveness of n-grams in the analysis of sentiments.



IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 83354-83362 ◽  
Author(s):  
Ali Feizollah ◽  
Sulaiman Ainin ◽  
Nor Badrul Anuar ◽  
Nor Aniza Binti Abdullah ◽  
Mohamad Hazim


2020 ◽  
Vol 9 (1) ◽  
pp. 2254-2261

Sentiments are the emotions which are communicated among individuals. These are opinions given by people on any item, product or service availed or experience online. This paper discusses that part of research area which involves the analysis of sentiments exchanged by people online that further tells how sentiments and features through online tourist reviews are extracted using deep learning techniques. Tourist behavior can be judged by tourists reviews for various tourist places, hotels and other services provided by tourism industry. The proposed idea of the paper is to show the high efficiency of deep learning techniques like CNN, RNN,LSTM to extract the features online by use of extra hidden layers. Further, comparison of these techniques as well as comparison of these techniques with machine learning classical algorithms like SVM, Naïve Bayes, KNN,RF etc has been done to show that deep learning methods are more efficient than classical machine learning algorithms. The accurate capturing of attitudes of tourists towards tourist places, hotels & other services of tourism industry plays utmost important role to enhance the business model of tourism industry. This can be done through sentiment analysis using deep learning methods efficiently. Classification of polarity will be done by extracting textual features using CNN,RNN,LSTM deep learning algorithms. Extracting features are fed to deep learning classifier to classify the review into either positive, negative or neutral type of reviews. After comparing various deep learning and classical techniques of machine learning, it has been concluded that LSTM,RNN give best results to classify reviews into positive and negative reviews rather than SVM,KNN classical techniques. In this way sentiment analysis has been done and the proposed idea of this research paper is change in the machine learning techniques or methods from classical algorithms to neural network deep learning methods which in future definitely will give better results to analyze deeply the sentiments of tourists to find out the liking and disliking of various tourist places, hotels and related tourism services that will help tourism business industry to work on the gap in existing services provided by them and system can become more efficient in future. Such improved tourism system will give benefits to tourists or users in terms of better services and undoubtedly it will help tourism industry to enhance business in future.



Author(s):  
Alexander Ligthart ◽  
Cagatay Catal ◽  
Bedir Tekinerdogan

AbstractWith advanced digitalisation, we can observe a massive increase of user-generated content on the web that provides opinions of people on different subjects. Sentiment analysis is the computational study of analysing people's feelings and opinions for an entity. The field of sentiment analysis has been the topic of extensive research in the past decades. In this paper, we present the results of a tertiary study, which aims to investigate the current state of the research in this field by synthesizing the results of published secondary studies (i.e., systematic literature review and systematic mapping study) on sentiment analysis. This tertiary study follows the guidelines of systematic literature reviews (SLR) and covers only secondary studies. The outcome of this tertiary study provides a comprehensive overview of the key topics and the different approaches for a variety of tasks in sentiment analysis. Different features, algorithms, and datasets used in sentiment analysis models are mapped. Challenges and open problems are identified that can help to identify points that require research efforts in sentiment analysis. In addition to the tertiary study, we also identified recent 112 deep learning-based sentiment analysis papers and categorized them based on the applied deep learning algorithms. According to this analysis, LSTM and CNN algorithms are the most used deep learning algorithms for sentiment analysis.



IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 153072-153082
Author(s):  
Urooba Sehar ◽  
Summrina Kanwal ◽  
Kia Dashtipur ◽  
Usama Mir ◽  
Ubaid Abbasi ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document