scholarly journals Dynamically improved bounds bidirectional search

2021 ◽  
Vol 291 ◽  
pp. 103405
Author(s):  
E.C. Sewell ◽  
S.H. Jacobson
Keyword(s):  
Author(s):  
Ryo Kuroiwa ◽  
Alex Fukunaga

Although symbolic bidirectional search is successful in optimal classical planning, state-of-the-art satisficing planners do not use bidirectional search. Previous bidirectional search planners for satisficing planning behaved similarly to a trivial portfolio, which independently executes forward and backward search without the desired ``meet-in-the-middle'' behavior of bidirectional search where the forward and backward search frontiers intersect at some point relatively far from the forward and backward start states. In this paper, we propose Top-to-Top Bidirectional Search (TTBS), a new bidirectional search strategy with front-to-front heuristic evaluation. We show that TTBS strongly exhibits ``meet-in-the-middle'' behavior and can solve instances solved by neither forward nor backward search on a number of domains.


2020 ◽  
Vol 34 (03) ◽  
pp. 2327-2334
Author(s):  
Vidal Alcázar ◽  
Pat Riddle ◽  
Mike Barley

In the past few years, new very successful bidirectional heuristic search algorithms have been proposed. Their key novelty is a lower bound on the cost of a solution that includes information from the g values in both directions. Kaindl and Kainz (1997) proposed measuring how inaccurate a heuristic is while expanding nodes in the opposite direction, and using this information to raise the f value of the evaluated nodes. However, this comes with a set of disadvantages and remains yet to be exploited to its full potential. Additionally, Sadhukhan (2013) presented BAE∗, a bidirectional best-first search algorithm based on the accumulated heuristic inaccuracy along a path. However, no complete comparison in regards to other bidirectional algorithms has yet been done, neither theoretical nor empirical. In this paper we define individual bounds within the lower-bound framework and show how both Kaindl and Kainz's and Sadhukhan's methods can be generalized thus creating new bounds. This overcomes previous shortcomings and allows newer algorithms to benefit from these techniques as well. Experimental results show a substantial improvement, up to an order of magnitude in the number of necessarily-expanded nodes compared to state-of-the-art near-optimal algorithms in common benchmarks.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Zheng-kun Zhang ◽  
Chang-feng Zhu ◽  
Qing-rong Wang ◽  
Jia-shan Yuan

This paper focuses on the discrete robustness optimization of emergency transportation network with the consideration of timeliness and decision behavior of decision-maker under the limited rationality. Based on a situation that the nearer to disaster area, the higher probability of time delay, prospect theory is specially introduced to reflect the subjective decision behavior of decision-maker. Then, a discrete robustness optimization model is proposed with the purpose of the better timeliness and robustness. The model is based on the emergency transportation network with multistorage centers and multidisaster points. In order to obtain the optimal solution, an improved genetic algorithm is designed by introducing a bidirectional search strategy based on a newfangled path cluster to obtain specific paths that connect each storage centers and each disaster points. Finally, a case study is exhibited to demonstrate the reasonability of the model, theory, and algorithm. The result shows that the path cluster with the better timeliness and robustness can be well obtained by using the prospect theory and improved genetic algorithm. The analysis especially reveals that the robustness is correspondent to the risk aversion in prospect theory.


2018 ◽  
Vol 14 (3) ◽  
pp. 120-133 ◽  
Author(s):  
Said Fathalla

Due to the ubiquitous availability of the information on the web, there is a great need for a standardized representation of this information. Therefore, developing an efficient algorithm for retrieving information from knowledge graphs is a key challenge for many semantic web applications. This article presents spreading activation over ontology (SAOO) approach in order to detect the relatedness between two human diseases by applying spreading activation algorithm based on bidirectional search technique. The proposed approach detects two diseases relatedness by considering semantic domain knowledge. The methodology of the proposed work is divided into two phases: Semantic Matching and Diseases Relatedness Detection. In semantic matching, diseases within the user-submitted query are semantically identified in the ontology graph. In diseases relatedness detection, the relatedness between the two diseases is detected by using bidirectional-based spreading activation on the ontology graph. The classification of these diseases is provided as well.


2014 ◽  
Vol 513-517 ◽  
pp. 1822-1825
Author(s):  
Rui Wang ◽  
Na Wang

Typical shortest path is Dijkstra algorithm, its time complexity is O (n2). A map of the citys road network has many nodes, if we use the Dijkstra algorithm, the time complexity of the algorithm is too high and the speed of resolution this problem is slow. In order to change this situation, we are discussed from the aspects of algorithm design, puts forward the improved bidirectional search algorithm. Practice has proved that, the improved algorithm can improve the search speed and it suitable for intelligent transportation system.


Sign in / Sign up

Export Citation Format

Share Document