A trusted medical image super-resolution method based on feedback adaptive weighted dense network

2020 ◽  
Vol 106 ◽  
pp. 101857 ◽  
Author(s):  
Lihui Chen ◽  
Xiaomin Yang ◽  
Gwanggil Jeon ◽  
Marco Anisetti ◽  
Kai Liu
Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3351
Author(s):  
Yooho Lee ◽  
Dongsan Jun ◽  
Byung-Gyu Kim ◽  
Hunjoo Lee

Super resolution (SR) enables to generate a high-resolution (HR) image from one or more low-resolution (LR) images. Since a variety of CNN models have been recently studied in the areas of computer vision, these approaches have been combined with SR in order to provide higher image restoration. In this paper, we propose a lightweight CNN-based SR method, named multi-scale channel dense network (MCDN). In order to design the proposed network, we extracted the training images from the DIVerse 2K (DIV2K) dataset and investigated the trade-off between the SR accuracy and the network complexity. The experimental results show that the proposed method can significantly reduce the network complexity, such as the number of network parameters and total memory capacity, while maintaining slightly better or similar perceptual quality compared to the previous methods.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 12319-12327 ◽  
Author(s):  
Shengxiang Zhang ◽  
Gaobo Liang ◽  
Shuwan Pan ◽  
Lixin Zheng

Author(s):  
Rui Tang ◽  
Lihui Chen ◽  
Rongzhu Zhang ◽  
Awais Ahmad ◽  
Marcelo Keese Albertini ◽  
...  

Author(s):  
Feiqiang Liu ◽  
Qiang Yu ◽  
Lihui Chen ◽  
Gwanggil Jeon ◽  
Marcelo Keese Albertini ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. 22-29
Author(s):  
Kajol Singh ◽  
Manish Saxena

The images captured through a camera usually belong to over or under exposed conditions. The reason may be inappropriate lighting conditions or camera resolution. Hence, it is of utmost importance to have a few enhancement techniques that could make these artefacts look better. Hence, the primary objective pertaining to the adjustment and enhancement techniques is to enhance the characteristics of an image. The initial numeric values related to an image get distorted when an image is enhanced. Therefore, enhancement techniques should be designed in such a way that the image quality isn’t compromised. This research work is focused on proposed a network design for deep convolution neural networks for application of super resolution techniques. To improve the complexity of existing techniques this work is intended towards network designs, different filter size and CNN architecture. The CNN model is most effective model for detection and segmentation in image. This model will improve the efficiency of medical image reconstruction from LR to HR. The proposed model showed its efficiency not only PET medical images but also on retinal database and achieved advance results as compared to existing works.


Sign in / Sign up

Export Citation Format

Share Document