scholarly journals Multi-step fractional differential transform method for the solution of fractional order stiff systems☆

Author(s):  
Hytham.A. Alkresheh ◽  
Ahmad Izani Ismail
Author(s):  
Muhammed Yiğider ◽  
Serkan Okur

In this study, solutions of time-fractional differential equations that emerge from science and engineering have been investigated by employing reduced differential transform method. Initially, the definition of the derivatives with fractional order and their important features are given. Afterwards, by employing the Caputo derivative, reduced differential transform method has been introduced. Finally, the numerical solutions of the fractional order Murray equation have been obtained by utilizing reduced differential transform method and results have been compared through graphs and tables. Keywords: Time-fractional differential equations, Reduced differential transform methods, Murray equations, Caputo fractional derivative.


2018 ◽  
Vol 14 (1) ◽  
pp. 7521-7532
Author(s):  
Subhabrata Mondal ◽  
B. N. Mandal

The application of fractional differential transform method, developed for differential equations of fractional order, are extended to derive exact analytical solutions of fractional order Abel integral equations. The fractional integrations are described in the Riemann-Liouville sense and fractional derivatives are described in the Caputo sense. Abel integral equation occurs in the mathematical modeling of various problems in physics, astrophysics, solid mechanics and applied sciences. An analytic technique for solving Abel integral equation of first kind by the proposed method is introduced here. Also illustrative examples with exact solutions are considered to show the validity and applicability of the proposed method. Abel integral equation, Differential transform method, Fractional differential transform method.


Author(s):  
Mridula Purohit, Et. al.

This paper presents the solution of coupled equations which are of fractional order using differential transform method. In this paper we extend the scope of differential transform method to system of fractional differential equations so that we get the analytical solutions. The coupled fractional differential equations of a physical system, namely, coupled fractional oscillator with some applications is given via differential transform method. Here we introduce the solution of coupled oscillation of equal fractional order which can be enhanced to unequal fractional order.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Shaher Momani ◽  
Asad Freihat ◽  
Mohammed AL-Smadi

The multistep generalized differential transform method is applied to solve the fractional-order multiple chaotic FitzHugh-Nagumo (FHN) neurons model. The algorithm is illustrated by studying the dynamics of three coupled chaotic FHN neurons equations with different gap junctions under external electrical stimulation. The fractional derivatives are described in the Caputo sense. Furthermore, we present figurative comparisons between the proposed scheme and the classical fourth-order Runge-Kutta method to demonstrate the accuracy and applicability of this method. The graphical results reveal that only few terms are required to deduce the approximate solutions which are found to be accurate and efficient.


Sign in / Sign up

Export Citation Format

Share Document