scholarly journals Analysis of Time to Form Colony Units for Connective Tissue Progenitor Cells (Stem Cells) Harvested From Concentrated Bone Marrow Aspirate and Subacromial Bursa Tissue in Patients Undergoing Rotator Cuff Repair

2020 ◽  
Vol 2 (5) ◽  
pp. e629-e636
Author(s):  
Arthur Landry ◽  
Benjamin J. Levy ◽  
Mary Beth McCarthy ◽  
Lukas N. Muench ◽  
Colin Uyeki ◽  
...  
2016 ◽  
Vol 38 (1) ◽  
pp. 319-329 ◽  
Author(s):  
Yulei Gao ◽  
Yinquan Zhang ◽  
Yanghu Lu ◽  
Yi Wang ◽  
Xingrui Kou ◽  
...  

Background/Aims: This study investigated the effect of silencing TOB1 (Transducer of ERBB2, 1) expression in bone marrow-derived mesenchymal stem cells (MSCs) on MSC-facilitated tendon-bone healing in a rat supraspinatus repair model. Methods: Rat MSCs were transduced with a recombinant lentivirus encoding short hairpin RNA (shRNA) against TOB1. MSC cell proliferation was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. The effect of MSCs with TOB1 deficiency on tendon-bone healing in a rat rotator cuff repair model was evaluated by biomechanical testing, histological analysis and collagen type I and II gene expression. An upstream regulator (miR-218) of TOB1 was determined in MSCs. Results: We found that knockdown of TOB1 significantly increased the proliferative activity of rat MSCs in vitro. When MSCs with TOB1 deficiency were injected into injured rat supraspinatus tendon-bone junctions, the effect on tendon-bone healing was enhanced compared to treatment with control MSCs with normal TOB1 expression, as evidenced by elevated levels of ultimate load to failure and stiffness, increased amount of fibrocartilage and augmented expression of collagen type I and type II genes. In addition, we found that the TOB1 3′ untranslated region is a direct target of miR-218. Similar to the effect of TOB1 deficiency, overexpression of miR-218 effectively promoted tendon-bone healing in rat. Conclusion: These results suggest that TOB1 may play a negative role in the effect of MSCs on tendon-bone healing, and imply that expression of TOB1 may be regulated by miR-218.


Joints ◽  
2018 ◽  
Vol 06 (02) ◽  
pp. 100-103
Author(s):  
Gabriele Thiébat ◽  
Paolo Capitani ◽  
Laura de Girolamo ◽  
Carlotta Perucca Orfei ◽  
Francesca Facchini ◽  
...  

Purpose The purpose of this study is to investigate the in vitro biocompatibility of three different suture anchors (all-suture anchor, metal anchor, and polyetheretherketone anchor), commonly used for the rotator cuff repair. Methods To assess the biocompatibility of the anchors, the possible cytotoxicity and the immunogenicity of the devices were assessed by cell viability assay and cell count on cultures of bone marrow stem cells (BMSCs) and peripheral blood leucocytes (PBLs), respectively. The possible inhibitory effect of the devices on BMSCs osteogenic potential was evaluated by alkaline phosphatase activity and matrix deposition assay. Results The viability of BMSCs was slightly reduced when cultured in the presence of the devices (−24 ± 3%). Nevertheless, they were able to differentiate toward the osteogenic lineage in all culture conditions. The proliferation of PBLs and the production of interleukin-2 were not enhanced by the presence of any device. Conclusion The analyzed devices did not significantly affect the normal cells functions when directly cultured with human primary BMSCs or PBLs, in terms of osteogenic differentiation and inflammatory reaction. Clinical Relevance A deeper knowledge of the biological reactions to different devices used in rotator cuff surgeries would improve the clinical outcome of these procedures.


Sign in / Sign up

Export Citation Format

Share Document