A Symbiotic Organisms Search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems

2016 ◽  
Vol 46 ◽  
pp. 344-360 ◽  
Author(s):  
Arnapurna Panda ◽  
Sabyasachi Pani
Author(s):  
Xinghuo Yu ◽  
◽  
Baolin Wu

In this paper, we propose a novel adaptive penalty function method for constrained optimization problems using the evolutionary programming technique. This method incorporates an adaptive tuning algorithm that adjusts the penalty parameters according to the population landscape so that it allows fast escape from a local optimum and quick convergence toward a global optimum. The method is simple and computationally effective in the sense that only very few penalty parameters are needed for tuning. Simulation results of five well-known benchmark problems are presented to show the performance of the proposed method.


2021 ◽  
pp. 136943322110262
Author(s):  
Mohammad H Makiabadi ◽  
Mahmoud R Maheri

An enhanced symbiotic organisms search (ESOS) algorithm is developed and presented. Modifications to the basic symbiotic organisms search algorithm are carried out in all three phases of the algorithm with the aim of balancing the exploitation and exploration capabilities of the algorithm. To verify validity and capability of the ESOS algorithm in solving general optimization problems, the CEC2014 set of 22 benchmark functions is first optimized and the results are compared with other metaheuristic algorithms. The ESOS algorithm is then used to optimize the sizing and shape of five benchmark trusses with multiple frequency constraints. The best (minimum) mass, mean mass, standard deviation of the mass, total number of function evaluations, and the values of frequency constraints are then compared with those of a number of other metaheuristic solutions available in the literature. It is shown that the proposed ESOS algorithm is generally more efficient in optimizing the shape and sizing of trusses with dynamic frequency constraints compared to other reported metaheuristic algorithms, including the basic symbiotic organisms search and its other recently proposed improved variants such as the improved symbiotic organisms search algorithm (ISOS) and modified symbiotic organisms search algorithm (MSOS).


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Minggang Dong ◽  
Ning Wang ◽  
Xiaohui Cheng ◽  
Chuanxian Jiang

Motivated by recent advancements in differential evolution and constraints handling methods, this paper presents a novel modified oracle penalty function-based composite differential evolution (MOCoDE) for constrained optimization problems (COPs). More specifically, the original oracle penalty function approach is modified so as to satisfy the optimization criterion of COPs; then the modified oracle penalty function is incorporated in composite DE. Furthermore, in order to solve more complex COPs with discrete, integer, or binary variables, a discrete variable handling technique is introduced into MOCoDE to solve complex COPs with mix variables. This method is assessed on eleven constrained optimization benchmark functions and seven well-studied engineering problems in real life. Experimental results demonstrate that MOCoDE achieves competitive performance with respect to some other state-of-the-art approaches in constrained optimization evolutionary algorithms. Moreover, the strengths of the proposed method include few parameters and its ease of implementation, rendering it applicable to real life. Therefore, MOCoDE can be an efficient alternative to solving constrained optimization problems.


2019 ◽  
Vol 77 ◽  
pp. 567-583 ◽  
Author(s):  
Khoa H. Truong ◽  
Perumal Nallagownden ◽  
Zuhairi Baharudin ◽  
Dieu N. Vo

Sign in / Sign up

Export Citation Format

Share Document