Probabilistic resident space object detection using archival THEMIS fluxgate magnetometer data

2018 ◽  
Vol 61 (9) ◽  
pp. 2301-2319 ◽  
Author(s):  
Julian Brew ◽  
Marcus J. Holzinger
Author(s):  
T. A. Bowen ◽  
S. D. Bale ◽  
J. W. Bonnell ◽  
T. Dudok de Wit ◽  
K. Goetz ◽  
...  

1998 ◽  
Vol 16 (5) ◽  
pp. 542-548 ◽  
Author(s):  
O. Saka ◽  
H. Akaki ◽  
O. Watanabe ◽  
M. Shinohara ◽  
D. N. Baker

Abstract. Fluxgate magnetometer data recorded at the dip-equator (Huancayo, Peru; 1.44°N, 355.9° in geomagnetic coordinates; 12.1°S, 75.2°W in geographic coordinates; L = 1.00) with higher accuracy of timing (0.1 s) and amplitude resolution (0.01 nT) were utilized to survey an onset of Pi 2 pulsations in the midnight sector (2100–0100 LT) during PROMIS (Polar Region and Outer Magnetosphere International Study) periods (1 March–20 June, 1986). It is found that changing field line magnitude and vector as observed by magnetometer on board the synchronous satellites in the midnight sector often takes place simultaneously with the onset of Pi 2 pulsations at the dip-equator. The field disturbances that follow thereafter tend to last for some time both at the geosynchronous altitudes and the dip-equator. In this report, we examine the initial response of the field lines in space, and attempt to classify how the field line vector changed in the meridional plane. Key words. Magnetospheric physics · Magnetospheric configuration and dynamics · MHD waves and instabilities · Plasmasphere


2020 ◽  
Vol 44 (3) ◽  
pp. 375-384
Author(s):  
I.G. Zhurkin ◽  
L.N. Chaban ◽  
P.Yu. Orlov

When solving a variety of celestial navigation tasks there is a problem of determining parameters of spacecraft motion and onboard primary payload orientation based on the coordinates of registered star images. Furthermore, unwanted objects, like active satellites, natural and artificial space debris, that reduce the probability of correct recognition may get into the field of view of a satellite sensor. This prompts the necessity to filter out such interference from the star field images. However, if the objects under recognition are bodies located in near-Earth space, in this case, the star images themselves will act as interferences. In addition, since the detection and cataloging of these objects from the Earth’s surface is complicated by their small size, the atmospheric effects, as well as other technical difficulties, it is worthwhile to use the existing equipment onboard spacecrafts to solve this task. The existing recognition algorithms for star groups, as well as their classification, are presented in this paper. Moreover, a structurally topological approach for identifying groups of stars based on the properties of enveloping polygons used in constructing topological star patterns is proposed. Specific features in the construction of topological configurations on the analyzed set of points, as well as the principles of dynamic space object detection within their limits are described. Results of the numerical experiments performed using the developed algorithm on the star field maps and model scenes are presented.


2017 ◽  
Vol 35 (3) ◽  
pp. 645-657 ◽  
Author(s):  
Evelyn Liebert ◽  
Christian Nabert ◽  
Christopher Perschke ◽  
Karl-Heinz Fornaçon ◽  
Karl-Heinz Glassmeier

Abstract. We present a statistical survey of current structures observed by the Cluster spacecraft at high-latitude day-side magnetopause encounters in the close vicinity of the polar cusps. Making use of the curlometer technique and the fluxgate magnetometer data, we calculate the 3-D current densities and investigate the magnetopause current direction, location, and magnitude during varying solar wind conditions. We find that the orientation of the day-side current structures is in accordance with existing magnetopause current models. Based on the ambient plasma properties, we distinguish five different transition regions at the magnetopause surface and observe distinctive current properties for each region. Additionally, we find that the location of currents varies with respect to the onset of the changes in the plasma environment during magnetopause crossings.


2016 ◽  
Vol 53 (3) ◽  
pp. 401-419 ◽  
Author(s):  
Adam C. Snow ◽  
Johnny L. Worthy ◽  
Angela den Boer ◽  
Luke J. Alexander ◽  
Marcus J. Holzinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document