Robust three-dimensional path-following control for an under-actuated stratospheric airship

2019 ◽  
Vol 63 (1) ◽  
pp. 526-538 ◽  
Author(s):  
Lin Cheng ◽  
Zongyu Zuo ◽  
Jiawei Song ◽  
Xiao Liang
Author(s):  
Yuanrong Chen ◽  
Jingfen Qiao ◽  
Jincun Liu ◽  
Ran Zhao ◽  
Dong An ◽  
...  

2016 ◽  
Vol 39 (7) ◽  
pp. 987-999 ◽  
Author(s):  
Zewei Zheng ◽  
Keyu Yan ◽  
Shuaixian Yu ◽  
Bing Zhu ◽  
Ming Zhu

This paper proposes two different path following control schemes for a stratospheric airship with actuator saturation. Each of the control schemes consists of a guidance loop and an attitude control loop. In both schemes, guidance laws are designed according to the line-of-sight guidance-based path following principle. In the first control scheme, a robust H∞ controller without constraints is designed based on the planar model of a stratospheric airship to stabilize path-following errors. The input constraints are then addressed by using a regional [Formula: see text]-based model recovery anti-windup compensator, which prevents the unconstrained controller from misbehaving in the constrained closed loop with anti-windup augmentation and ensures the systematic stability. In the second control scheme, model predictive control is applied to guarantee the path-following of the closed-loop system and explicitly address the magnitude and rate of rudders of the stratospheric airship. Theoretical results are illustrated by numerical simulations where both closed-loop systems are capable of following their desired paths and the constraints on control inputs are satisfied.


Author(s):  
Yan Wei ◽  
Pingfang Zhou ◽  
Yueying Wang ◽  
Dengping Duan ◽  
Zheng Chen

This paper addresses the finite-time three-dimensional path-following control problem for underactuated autonomous airship with error constraints and uncertainties. First, a five degrees-of-freedom path-following error model in the Serret-Frenet coordinate frame is established. By applying the finite-time stability theory, a virtual guidance-based finite-time adaptive neural backstepping path-following control approach is proposed. Barrier Lyapunov functions (BLFs) are introduced to deal with attitude error constraints. Neural networks (NNs) are presented to compensate for the uncertainties. To prevent the “explosion of complexity” in the design of the backstepping method, a finite-time convergent differentiator (FTCD) is introduced to estimate the time derivatives of virtual control signals. Stability analysis showed that all closed-loop signals are uniformly ultimately bounded, the constrained requirements on the airship attitude errors are never violated, and the path-following errors converge to a small neighborhood of the origin in a finite time. At last, simulation studies are provided to demonstrate the effectiveness of the proposed control approach.


Sign in / Sign up

Export Citation Format

Share Document