Forest Parameters Inversion by Mean Coherence Set from Single-baseline PolInSAR Data

Author(s):  
HuuCuong Thieu ◽  
MinhNghia Pham ◽  
Van Nhu Le
2010 ◽  
Author(s):  
Fuchen Liu ◽  
Shihong Zhou ◽  
Jeffrey Simmen ◽  
Ellen S. Livingston ◽  
Ji-Xun Zhou ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Kangxu Ren ◽  
Junfeng Zhao ◽  
Jian Zhao ◽  
Xilong Sun

Abstract At least three very different oil-water contacts (OWC) encountered in the deepwater, huge anticline, pre-salt carbonate reservoirs of X oilfield, Santos Basin, Brazil. The boundaries identification between different OWC units was very important to help calculating the reserves in place, which was the core factor for the development campaign. Based on analysis of wells pressure interference testing data, and interpretation of tight intervals in boreholes, predicating the pre-salt distribution of igneous rocks, intrusion baked aureoles, the silicification and the high GR carbonate rocks, the viewpoint of boundaries developed between different OWC sub-units in the lower parts of this complex carbonate reservoirs had been better understood. Core samples, logging curves, including conventional logging and other special types such as NMR, UBI and ECS, as well as the multi-parameters inversion seismic data, were adopted to confirm the tight intervals in boreholes and to predicate the possible divided boundaries between wells. In the X oilfield, hundreds of meters pre-salt carbonate reservoir had been confirmed to be laterally connected, i.e., the connected intervals including almost the whole Barra Velha Formation and/or the main parts of the Itapema Formation. However, in the middle and/or the lower sections of pre-salt target layers, the situation changed because there developed many complicated tight bodies, which were formed by intrusive diabase dykes and/or sills and the tight carbonate rocks. Many pre-salt inner-layers diabases in X oilfield had very low porosity and permeability. The tight carbonate rocks mostly developed either during early sedimentary process or by latter intrusion metamorphism and/or silicification. Tight bodies were firstly identified in drilled wells with the help of core samples and logging curves. Then, the continuous boundary were discerned on inversion seismic sections marked by wells. This paper showed the idea of coupling the different OWC units in a deepwater pre-salt carbonate play with complicated tight bodies. With the marking of wells, spatial distributions of tight layers were successfully discerned and predicated on inversion seismic sections.


2016 ◽  
Vol 13 (4) ◽  
pp. 649-657 ◽  
Author(s):  
Yi-Yuan He ◽  
Tian-Yue Hu ◽  
Chuan He ◽  
Yu-Yang Tan

2019 ◽  
Vol 57 (5) ◽  
pp. 2876-2888 ◽  
Author(s):  
Hai Qiang Fu ◽  
Jian Jun Zhu ◽  
Chang Cheng Wang ◽  
Rong Zhao ◽  
Qing Hua Xie
Keyword(s):  

2022 ◽  
Vol 163 (2) ◽  
pp. 65
Author(s):  
T. Cassanelli ◽  
Calvin Leung ◽  
M. Rahman ◽  
K. Vanderlinde ◽  
J. Mena-Parra ◽  
...  

Abstract The Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB experiment has detected thousands of fast radio bursts (FRBs) due to its sensitivity and wide field of view; however, its low angular resolution prevents it from localizing events to their host galaxies. Very long baseline interferometry (VLBI), triggered by FRB detections from CHIME/FRB will solve the challenge of localization for non-repeating events. Using a refurbished 10 m radio dish at the Algonquin Radio Observatory located in Ontario Canada, we developed a testbed for a VLBI experiment with a theoretical λ/D ≲ 30 mas. We provide an overview of the 10 m system and describe its refurbishment, the data acquisition, and a procedure for fringe fitting that simultaneously estimates the geometric delay used for localization and the dispersive delay from the ionosphere. Using single pulses from the Crab pulsar, we validate the system and localization procedure, and analyze the clock stability between sites, which is critical for coherently delay referencing an FRB event. We find a localization of ∼200 mas is possible with the performance of the current system (single-baseline). Furthermore, for sources with insufficient signal or restricted wideband to simultaneously measure both geometric and ionospheric delays, we show that the differential ionospheric contribution between the two sites must be measured to a precision of 1 × 10−8 pc cm−3 to provide a reasonable localization from a detection in the 400–800 MHz band. Finally we show detection of an FRB observed simultaneously in the CHIME and the Algonquin 10 m telescope, the first non-repeating FRB in this long baseline. This project serves as a testbed for the forthcoming CHIME/FRB Outriggers project.


2019 ◽  
Vol 13 (4) ◽  
pp. 745-754 ◽  
Author(s):  
Yanfei Wang ◽  
◽  
Dmitry Lukyanenko ◽  
Anatoly Yagola ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document