radio observatory
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol 163 (2) ◽  
pp. 65
Author(s):  
T. Cassanelli ◽  
Calvin Leung ◽  
M. Rahman ◽  
K. Vanderlinde ◽  
J. Mena-Parra ◽  
...  

Abstract The Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB experiment has detected thousands of fast radio bursts (FRBs) due to its sensitivity and wide field of view; however, its low angular resolution prevents it from localizing events to their host galaxies. Very long baseline interferometry (VLBI), triggered by FRB detections from CHIME/FRB will solve the challenge of localization for non-repeating events. Using a refurbished 10 m radio dish at the Algonquin Radio Observatory located in Ontario Canada, we developed a testbed for a VLBI experiment with a theoretical λ/D ≲ 30 mas. We provide an overview of the 10 m system and describe its refurbishment, the data acquisition, and a procedure for fringe fitting that simultaneously estimates the geometric delay used for localization and the dispersive delay from the ionosphere. Using single pulses from the Crab pulsar, we validate the system and localization procedure, and analyze the clock stability between sites, which is critical for coherently delay referencing an FRB event. We find a localization of ∼200 mas is possible with the performance of the current system (single-baseline). Furthermore, for sources with insufficient signal or restricted wideband to simultaneously measure both geometric and ionospheric delays, we show that the differential ionospheric contribution between the two sites must be measured to a precision of 1 × 10−8 pc cm−3 to provide a reasonable localization from a detection in the 400–800 MHz band. Finally we show detection of an FRB observed simultaneously in the CHIME and the Algonquin 10 m telescope, the first non-repeating FRB in this long baseline. This project serves as a testbed for the forthcoming CHIME/FRB Outriggers project.


2021 ◽  
Vol 922 (2) ◽  
pp. 106
Author(s):  
J. J. Bernal ◽  
C. D. Sephus ◽  
L. M. Ziurys

Abstract The Galactic Habitable Zone (GHZ) is a region believed hospitable for life. To further constrain the GHZ, observations have been conducted of the J = 2 → 1 transitions of methanol (CH3OH) at 97 GHz, toward 20 molecular clouds located in the outer Galaxy (R GC = 12.9–23.5 kpc), using the 12 m telescope of the Arizona Radio Observatory. Methanol was detected in 19 out of 20 observed clouds, including sources as far as R GC = 23.5 kpc. Identification was secured by the measurement of multiple asymmetry and torsional components in the J = 2 → 1 transition, which were resolved in the narrow line profiles observed (ΔV 1/2 ∼ 1–3 km s−1). From a radiative transfer analysis, column densities for these clouds of N tot = 0.1–1.5 × 1013 cm−2 were derived, corresponding to fractional abundances, relative to H2, of f (CH3OH) ∼ 0.2–4.9 × 10−9. The analysis also indicates that these clouds are cold (T K ∼ 10–25 K) and dense (n(H2) ∼ 106 cm−3), as found from previous H2CO observations. The methanol abundances in the outer Galaxy are comparable to those observed in colder molecular clouds in the solar neighborhood. The abundance of CH3OH therefore does not appear to decrease significantly with distances from the Galactic Center, even at R GC ∼ 20–23 kpc. Furthermore, the production of methanol is apparently not affected by the decline in metallicity with galactocentric distance. These observations suggest that organic chemistry is prevalent in the outer Galaxy, and methanol and other organic molecules may serve to assess the GHZ.


2021 ◽  
Vol 508 (2) ◽  
pp. 1947-1953
Author(s):  
Parasar Thulasiram ◽  
Hsiu-Hsien Lin

ABSTRACT We used a new spectral-fitting technique to identify a subpopulation of 6 narrow-band giant pulses from the Crab pulsar out of a total of 1578. These giant pulses were detected in 77 min of observations with the 46-m dish at the Algonquin Radio Observatory at 400–800 MHz. The narrow-band giant pulses consist of both main- and inter-pulses, thereby being more likely to be caused by an intrinsic emission mechanism as opposed to a propagation effect. Fast radio bursts (FRBs) have demonstrated similar narrow-band features, while only little has been observed in the giant pulses of pulsars. We report the narrow-band giant pulses with Δν/ν of the order of 0.1, which is close to the value of 0.05 reported for the repeater FRB 20190711A. Hence, the connection between FRBs and giant pulses of pulsars is further established.


2021 ◽  
Author(s):  
Ivan Galkin ◽  
Artem Vesnin ◽  
Bodo Reinisch ◽  
Dieter Bilitza

<p>Real-time assimilative <em>empirical </em>models based on the International Reference Ionosphere (IRI) [1], a 3D quiet-time climatology model of the ionospheric plasma density, provide prompt weather specification by adjusting IRI definitions into a better match with the available measurements and geospace activity indicators [2]. The IRI-based Real-Time Assimilative Model (IRTAM) [3] is one of such Real-Time IRI operational ionospheric weather models based on the low-latency sensor inputs from the Global Ionosphere Radio Observatory (GIRO) [4].</p><p>IRTAM leverages predictive properties of the underlying IRI expansion basis formalism [5] that treats dynamics of the ionospheric plasma in terms of its harmonics, both temporal and spatial. It uses Non-linear Error Compensation Technique with Associative Restoration (NECTAR) technique [6] to first detect multi-scale inherent diurnal periodicity of the differences between GIRO measurements and the underlying IRI climatology. Then, under the assumption that variations in time at periodic, planetary-scale <em>Eigen</em> scales (diurnal, half-diurnal, 8-hour, etc.) translate to their spatial properties, it globally interpolates and extrapolates each diurnal harmonic individually. This approach allowed NECTAR to associate observed fragments of the activity at GIRO locations with the unveiling grand-scale weather processes of the matching variability scales, as the ground observatories co-rotate with the Earth.</p><p>Predictive properties of IRTAM are discussed in order to establish the baseline predictability of the ionospheric dynamics that analyzes only the latest 24-hour history of its deviation from the expected behavior. Concepts for the next generation empirical forecast models are outlined that would leverage the same principle of associative restoration to evaluate the geospace activity timeline and its subtle associations with subsequent storm-time behavior of the ionosphere.</p><p><strong>References</strong></p><p>[1] Bilitza, D. (ed.) (1990), International Reference Ionosphere 1990, 155 pages, National Space Science Data Center, NSSDC/WDC-A-R&S 90-22, Greenbelt, Maryland, November 1990.</p><p>[2] Bilitza, D., D. Altadill, V. Truhlik, V. Shubin, I. Galkin, B. Reinisch, and X. Huang (2017), International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions, Space Weather, 15, 418-429, doi:10.1002/2016SW001593.</p><p>[3] Galkin, I. A., B. W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO Data into a Real-Time IRI, Radio Sci., 47, RS0L07, doi:10.1029/2011RS004952.</p><p>[4] Reinisch, B.W. and I.A. Galkin (2011), Global Ionospheric Radio Observatory (GIRO), Earth Planets Space, vol. 63 no. 4 pp. 377-381, doi:10.5047/eps.2011.03.001</p><p>[5] International Telecommunications Union (2009), ITU-R reference ionospheric characteristics, Recommendation P.1239-2 (10/2009). Retrieved from http://www.itu.int/rec/R-REC-P.1239/en.</p><p>[6] Galkin, I. A., B. W. Reinisch, A. Vesnin, et al., (2020) Assimilation of Sparse Continuous Near-Earth Weather Measurements by NECTAR Model Morphing, Space Weather, 18, e2020SW002463, doi:10.1029/2020SW002463.</p>


Author(s):  
Huanxue Feng ◽  
Junzhi Wang ◽  
Shanghuo Li ◽  
Yong Shi ◽  
Fengyao Zhu ◽  
...  

Abstract We performed observations of the HC3N (24–23, 17–16, 11–10, 8–7) lines towards a sample consisting of 19 Galactic massive star-forming regions with the Arizona Radio Observatory 12 m and Caltech Submillimeter Observatory 10.4 m telescopes. HC3N (24–23, 17–16, 11–10, 8–7) lines were detected in sources except for W 44, where only HC3N (17–16, 11–10) were detected. Twelve of the nineteen sources showed probable line wing features. The excitation temperatures were estimated from the line ratio of HC3N (24–23) to HC3N (17–16) for 18 sources and are in the range 23– 57 K. The line widths of higher-J transitions are larger than lower-J ones for most sources. This indicates that the inner dense warm regions have more violent turbulence or other motions (such as rotation) than outer regions in these sources. A possible cutoff tendency was found around LIR ∼ 106 L⊙ in the relation between LIR and full width at half maximum line widths.


2020 ◽  
Vol 6 (3) ◽  
pp. 26-32
Author(s):  
Irina Kuzmenko

We have investigated the cause of three “isolated” negative radio bursts recorded one after another at several frequencies in the 1–17 GHz range at the Nobeyama Radio Observatory, Ussuriysk Astrophysical Observatory, and Learmonth Solar Observatory on April 10–11, 2014. The cause of the rarely observed “isolated” negative bursts is the absorption of radio emission from the quiet Sun’s regions or a radio source in the material of a large eruptive filament. Analysis of observations in different spectral ranges using images from the Nobeyama radioheliograph and the Solar Dynamics Observatory/Atmospheric Imaging Assembly has shown that the cause of all the three radio emission depressions was the screening of the limb radio source by the material of recurrent coronal jets. Parameters of the absorbing material were estimated using a previously developed model. These estimates confirmed the absorption of solar radio emission in cold material with a temperature of ~104 K at the bottom of the jets.


2020 ◽  
Vol 6 (3) ◽  
pp. 23-28
Author(s):  
Irina Kuzmenko

We have investigated the cause of three “isolated” negative radio bursts recorded one after another at several frequencies in the 1–17 GHz range at the Nobeyama Radio Observatory, Ussuriysk Astrophysical Observatory, and Learmonth Solar Observatory on April 10–11, 2014. The cause of the rarely observed “isolated” negative bursts is the absorption of radio emission from the quiet Sun’s regions or a radio source in the material of a large eruptive filament. Analysis of observations in different spectral ranges using images from the Nobeyama radioheliograph and the Solar Dynamics Observatory/Atmospheric Imaging Assembly has shown that the cause of all the three radio emission depressions was the screening of the limb radio source by the material of recurrent coronal jets. Parameters of the absorbing material were estimated using a previously developed model. These estimates confirmed the absorption of solar radio emission in cold material with a temperature of ~104 K at the bottom of the jets.


Galaxies ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 69
Author(s):  
Artem Sukharev ◽  
Michail Ryabov ◽  
Vladislavs Bezrukovs ◽  
Arturs Orbidans ◽  
Marcis Bleiders ◽  
...  

BL Lac object 3C 371 is variable in optical and radio range, according to long-term monitoring data, for example AAVSO (American Association of Variable Star Observers) and OVRO (Owens Valley Radio Observatory). In addition, some authors note intra-night variability. However, in terms of access, just a few works are devoted to this topic, and questions remain about intra-day variability in radio range. The purpose of the work is to search for fast variability in radio (5, 6.1, 6.7 GHz) and optical bands (V, R, I) using international cooperation in 2019 and 2020 observation sessions. The 16-m radio telescope VIRAC, in Latvia, as well as optical telescopes AZT-3 (Mayaki, Ukraine), VNT (Vihorlat, Slovakia), and Schmidt camera (Baldone, Latvia) were used. To analyze variability, the STFT method of spectrograms and Lomb–Scargle periodograms for non-uniform time series were used. As result of the work, there is no correlation between optical and radio observations, and no significant quasi-harmonic variability was detected in radio range, but there is irregular low amplitude variability. In the optical range, there is variability with a characteristic time of about seven days and possibly less. Cyclical variability of 3C 371 was found in the optical range, and intra-day variability in radio range is most likely absent, as there are irregular variations and noise. It is planned to continue joint radio-optical observations 3C 371 to accumulate the necessary statistics.


Sign in / Sign up

Export Citation Format

Share Document