scholarly journals Radiative transfer modeling of the observed line profiles in G31.41+0.31

Author(s):  
Bratati Bhat ◽  
Prasanta Gorai ◽  
Suman Kumar Mondal ◽  
Sandip K. Chakrabarti ◽  
Ankan Das
2002 ◽  
Vol 80 (4) ◽  
pp. 443-454 ◽  
Author(s):  
J R Pardo ◽  
M Ridal ◽  
D Murtagh ◽  
J Cernicharo

The Odin satellite is equipped with millimetre and sub-millimetre receivers for observations of several molecular lines in the middle and upper atmosphere of our planet (~25–100 km, the particular altitude range depending on the species) for studies in dynamics, chemistry, and energy transfer in these regions. The same receivers are also used to observe molecules in outer space, this being the astrophysical share of the project. Among the atmospheric lines that can be observed, we find two corresponding to molecular oxygen (118.75 GHz and 487.25 GHz). These lines can be used for retrievals of the atmospheric temperature vertical profile. In this paper, we describe the radiative-transfer modeling for O2 in the middle and upper atmosphere that we will use as a basis for the retrieval algorithms. Two different observation modes have been planned for Odin, the three-channel operational mode and a high-resolution mode. The first one will determine the temperature and pressure on an operational basis using the oxygen line at 118.75 GHz, while the latter can be used for measurements of both O2 lines, during a small fraction of the total available time for aeronomy, aimed at checking the particular details of the radiative transfer near O2 lines at very high altitudes (>70 km). The Odin temperature measurements are expected to cover the altitude range ~30–90 km. PACS Nos.: 07.57Mj, 94.10Dy, 95.75Rs


2021 ◽  
Author(s):  
Caterina Peris-Ferrús ◽  
José Luís Gómez-Amo ◽  
Francesco Scarlatti ◽  
Roberto Román ◽  
Claudia Emde ◽  
...  

2004 ◽  
Vol 424 (1) ◽  
pp. 165-177 ◽  
Author(s):  
D. Riechers ◽  
Y. Balega ◽  
T. Driebe ◽  
K.-H. Hofmann ◽  
A. B. Men'shchikov ◽  
...  

2007 ◽  
Vol 3 (S243) ◽  
pp. 83-94
Author(s):  
Tim J. Harries

AbstractEmission line profiles from pre-main-sequence objects accreting via magnetically-controlled funnel flows encode information on the geometry and kinematics of the material on stellar radius scales. In order to extract this information it is necessary to perform radiative-transfer modelling of the gas to produce synthetic line profiles. In this review I discuss the physics that needs to be included in such models, and the numerical methods and assumptions that are used to render the problem tractable. I review the progress made in the field over the last decade, and summarize the main successes and failures of the modelling work.


Sign in / Sign up

Export Citation Format

Share Document