Numerical study on solid-fuel scramjet combustor with fuel-rich hot gas

2018 ◽  
Vol 77 ◽  
pp. 25-33 ◽  
Author(s):  
Xiang Zhao ◽  
Zhi-xun Xia ◽  
Bing Liu ◽  
Zhong Lv ◽  
Li-kun Ma
Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1235 ◽  
Author(s):  
Chaolong Li ◽  
Zhixun Xia ◽  
Likun Ma ◽  
Xiang Zhao ◽  
Binbin Chen

Scramjet based on solid propellant is a good supplement for the power device of future hypersonic vehicles. A new scramjet combustor configuration using solid fuel, namely, the solid fuel rocket scramjet (SFRSCRJ) combustor is proposed. The numerical study was conducted to simulate a flight environment of Mach 6 at a 25 km altitude. Three-dimensional Reynolds-averaged Navier–Stokes equations coupled with shear stress transport (SST) k − ω turbulence model are used to analyze the effects of the cavity and its position on the combustor. The feasibility of the SFRSCRJ combustor with cavity is demonstrated based on the validation of the numerical method. Results show that the scramjet combustor configuration with a backward-facing step can resist high pressure generated by the combustion in the supersonic combustor. The total combustion efficiency of the SFRSCRJ combustor mainly depends on the combustion of particles in the fuel-rich gas. A proper combustion organization can promote particle combustion and improve the total combustion efficiency. Among the four configurations considered, the combustion efficiency of the mid-cavity configuration is the highest, up to about 70%. Therefore, the cavity can effectively increase the combustion efficiency of the SFRSCRJ combustor.


2021 ◽  
Vol 189 ◽  
pp. 222-234
Author(s):  
Wanzhi Han ◽  
Zhijun Wei ◽  
Guang Yang ◽  
Hao Zhang ◽  
Ningfei Wang

Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Carl M. Sangan ◽  
James A. Scobie ◽  
Gary D. Lock

This paper deals with a numerical study aimed at the characterization of hot gas ingestion through turbine rim seals. The numerical campaign focused on an experimental facility which models ingress through the rim seal into the upstream wheel-space of an axial-turbine stage. Single-clearance arrangements were considered in the form of axial- and radial-seal gap configurations. With the radial-seal clearance configuration, CFD steady-state solutions were able to predict the system sealing effectiveness over a wide range of coolant mass flow rates reasonably well. The greater insight of flow field provided by the computations illustrates the thermal buffering effect when ingress occurs: for a given sealing flow rate, the effectiveness on the rotor was significantly higher than that on the stator due to the axial flow of hot gases from stator to rotor caused by pumping effects. The predicted effectiveness on the rotor was compared with a theoretical model for the thermal buffering effect showing good agreement. When the axial-seal clearance arrangement is considered, the agreement between CFD and experiments worsens; the variation of sealing effectiveness with coolant flow rate calculated by means of the simulations display a distinct kink. It was found that the “kink phenomenon” can be ascribed to an over-estimation of the egress spoiling effects due to turbulence modelling limitations. Despite some weaknesses in the numerical predictions, the paper shows that CFD can be used to characterize the sealing performance of axial- and radial-clearance turbine rim seals.


1997 ◽  
Vol 13 (1) ◽  
pp. 131-141 ◽  
Author(s):  
R. Krishnamurthy ◽  
R. C. Rogers ◽  
S. N. Tiwari

Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Carl M. Sangan ◽  
James A. Scobie ◽  
Gary D. Lock

This paper deals with a numerical study aimed at the characterization of hot-gas ingestion through turbine rim seals. The numerical campaign focused on an experimental facility which models ingress through the rim seal into the upstream wheel-space of an axial-turbine stage. Single-clearance arrangements were considered in the form of axial- and radial-seal gap configurations. With the radial-seal clearance configuration, computational fluid dynamics (CFD) steady-state solutions were able to predict the system sealing effectiveness over a wide range of coolant mass flow rates reasonably well. The greater insight of flow field provided by the computations illustrates the thermal buffering effect when ingress occurs: For a given sealing flow rate, the effectiveness on the rotor was significantly higher than that on the stator due to the axial flow of hot gases from stator to rotor caused by pumping effects. The predicted effectiveness on the rotor was compared with a theoretical model for the thermal buffering effect showing good agreement. When the axial-seal clearance arrangement is considered, the agreement between CFD and experiments worsens; the variation of sealing effectiveness with coolant flow rate calculated by means of the simulations displays a distinct kink. It was found that the “kink phenomenon” can be ascribed to an overestimation of the egress spoiling effects due to turbulence modeling limitations. Despite some weaknesses in the numerical predictions, the paper shows that CFD can be used to characterize the sealing performance of axial- and radial-clearance turbine rim seals.


2019 ◽  
Vol 164 ◽  
pp. 212-229
Author(s):  
Gao Yonggang ◽  
Liu Yang ◽  
Chai Zexin ◽  
Li Xiaocong ◽  
Hu Chunbo ◽  
...  

2017 ◽  
Vol 18 (2) ◽  
pp. 106-112 ◽  
Author(s):  
Zhong Lv ◽  
Zhi-xun Xia ◽  
Bing Liu ◽  
Li-ya Huang

2019 ◽  
Vol 162 ◽  
pp. 145-154 ◽  
Author(s):  
Chaolong Li ◽  
Zhixun Xia ◽  
Likun Ma ◽  
Xiang Zhao ◽  
Binbin Chen

2020 ◽  
Vol 37 (06) ◽  
pp. 429-434
Author(s):  
Naining Liu ◽  
San Kim ◽  
Jin-Do Chung

Sign in / Sign up

Export Citation Format

Share Document