Barrier Lyapunov function-based integrated guidance and control with input saturation and state constraints

2019 ◽  
Vol 84 ◽  
pp. 845-855 ◽  
Author(s):  
Wangkui Liu ◽  
Yiyin Wei ◽  
Guangren Duan
2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Xiang Liu ◽  
Xiaogeng Liang

In this study, a novel integrated guidance and control (IGC) algorithm based on an IGC method and the asymmetric barrier Lyapunov function is designed; this algorithm is designed for the interceptor missile which uses a direct-force/aerodynamic-force control scheme. First, by considering the coupling between the pitch and the yaw channels of the interceptor missile, an IGC model of these channels is established, and a time-varying gain extended state observer (TVGESO) is designed to estimate unknown interferences in the model. Second, by considering the system output constraint problem, an asymmetric barrier Lyapunov function and a dynamic surface sliding-mode control method are employed to design the control law of the pitch and yaw channels to obtain the desired control moments. Finally, in light of redundancy in such actuators as aerodynamic rudders and jet devices, a dynamic control allocation algorithm is designed to assign the desired control moments to the actuators. Moreover, the results of simulations show that the IGC algorithm based on the asymmetric barrier Lyapunov function for the interceptor missile allows the outputs to meet the constraints and improves the stability of the control system of the interceptor missile.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Zhenhua Fu ◽  
Kuanqiao Zhang ◽  
Qintao Gan ◽  
Suochang Yang

Aiming at the problem of impact angle constraint and input saturation, an integrated guidance and control (IGC) algorithm with impact angle constraint and input saturation is proposed. A three-channel independent design model of missile IGC with impact angle constraint is established, and an extended state observer with fast finite-time convergence is designed to estimate and compensate model errors and coupling relationship between channels. Based on the nonsingular terminal sliding mode control and backstepping control, the IGC three-channel independent design is completed. Nussbaum function and an auxiliary system are introduced to deal with the input saturation. The Lyapunov function is constructed to prove the finite-time convergence of the IGC algorithm. The missile six-degree-of-freedom simulation results show the effectiveness and superiority of the IGC algorithm.


Sign in / Sign up

Export Citation Format

Share Document