scholarly journals Integrated Guidance and Control of Interceptor Missile Based on Asymmetric Barrier Lyapunov Function

2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Xiang Liu ◽  
Xiaogeng Liang

In this study, a novel integrated guidance and control (IGC) algorithm based on an IGC method and the asymmetric barrier Lyapunov function is designed; this algorithm is designed for the interceptor missile which uses a direct-force/aerodynamic-force control scheme. First, by considering the coupling between the pitch and the yaw channels of the interceptor missile, an IGC model of these channels is established, and a time-varying gain extended state observer (TVGESO) is designed to estimate unknown interferences in the model. Second, by considering the system output constraint problem, an asymmetric barrier Lyapunov function and a dynamic surface sliding-mode control method are employed to design the control law of the pitch and yaw channels to obtain the desired control moments. Finally, in light of redundancy in such actuators as aerodynamic rudders and jet devices, a dynamic control allocation algorithm is designed to assign the desired control moments to the actuators. Moreover, the results of simulations show that the IGC algorithm based on the asymmetric barrier Lyapunov function for the interceptor missile allows the outputs to meet the constraints and improves the stability of the control system of the interceptor missile.

2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Xiang Liu ◽  
Xiaogeng Liang

With the aim of achieving cooperative target interception by using multi-interceptor, a distributed cooperative control algorithm of the multi-interceptor with state coupling is proposed based on the IGC (integrated guidance and control) method. Considering the coupling relationship between the pitch and ya w channels, a state coupling “leader” IGC model is established, an FTDO (finite-time disturbance observer) is designed for estimating the unknown interference of the model, and the “leader” controller is designed according to the adaptive dynamic surface sliding-mode control law. Secondly, the cooperative control strategy of the multi-interceptor is designed with the “leader-follower” distributed network mode to obtain the speed in the three directions of the interceptor in air and transform them to the general flight speed, trajectory inclination angle, and trajectory deflection instruction by using the transformational relation of kinematics. Finally, the “follower” controller is designed with the FTDO and dynamic surface sliding-mode control. The designed multi-interceptor distributed cooperative IGC algorithm with state coupling has good stability according to the simulation results of two different communication topologies.


Author(s):  
Xiang Liu ◽  
Xiaogeng Liang

To solve the multi-interceptor coordination problem and to intercept the target with impact angle constraint, a novel distributed cooperative control algorithm with impact angle constraint based on integrated guidance and control is proposed. First, the mathematic model of integrated guidance and control is established by combining the interceptor-target relative motion model with the dynamic equation of the interceptor on pitch plane. The time varying gain extended state observer is developed to estimate and compensate the unknown disturbance. Based on the estimated value and fast nonsingular dynamic surface sliding control method, the IGC algorithm of leader is given; Then, based on distributed cooperative "leader-follower" model, the cooperative control strategy of multi-interceptor is designed, and gives out speeds in two directions on pitch plane, which are transformed to the command of total velocity and trajectory angle based on kinematic relations. Finally, to control the follower, the time varying gain extended state observer and the dynamic surface sliding control method are adopted. The simulation results demonstrate the effectiveness of the distributed cooperative control algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Shengjiang Yang ◽  
Jianguo Guo ◽  
Jun Zhou

A new integrated guidance and control (IGC) law is investigated for a homing missile with an impact angle against a ground target. Firstly, a control-oriented model with impact angle error of the IGC system in the pitch plane is formulated by linear coordinate transformation according to the motion kinematics and missile dynamics model. Secondly, an IGC law is proposed to satisfy the impact angle constraint and to improve the rapidity of the guidance and control system by combining the sliding mode control method and nonlinear extended disturbance observer technique. Thirdly, stability of the closed-loop guidance and control system is proven based on the Lyapunov stability theory, and the relationship between the accuracy of the impact angle and the estimate errors of nonlinear disturbances is derived from stability of the sliding mode. Finally, simulation results confirm that the proposed IGC law can improve the performance of the missile guidance and control system against a ground target.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tong An ◽  
JianHua Wang ◽  
YuLong Pan ◽  
HaiShan Chen

In this article, a low-order partial integrated guidance and control (PIGC) design method is proposed for diving hypersonic vehicles to impact ground maneuver target. A three-channel analytical model of body rates is deduced based on acceleration components of the hypersonic vehicle. By combining the analytical model of body rates and relative dynamic model between the hypersonic vehicle and target, three-channel commands of body rates are directly generated based on the extended state observer (ESO) technique, sliding mode control approach, and dynamic surface control theory in the guidance subsystem. In the attitude control subsystem, a sliding mode controller is designed to track the commands of body rates and generate commands of control surface fin deflections. By making full use of acceleration information of the hypersonic vehicle measured by the mounted accelerometer, the proposed PIGC design method provides a novel solution to compensate the unknown acceleration of the ground maneuver target. Besides, the order of design model is also reduced, and the design process is simplified. The effectiveness and robustness of the PIGC design method are verified and discussed by 6DOF simulation studies.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Kang Chen ◽  
Bin Fu ◽  
Yuening Ding ◽  
Jie Yan

This paper focuses on the integrated guidance and control (IGC) method applied in the interception of maneuvering near space hypersonic vehicles using the homogeneous high order sliding mode (HOSM) approach. The IGC model is derived by combining the target-missile relative motion and dynamic equations. Then, a fourth-order sliding mode controller is implemented in the augmented IGC model. To estimate the high order derivatives of the sliding manifold which is required in the HOSM method, an Arbitrary Order Robust Exact Differentiator is presented. At last, the idea of virtual control is introduced to alleviate the chattering of the control input without using any saturation functions which may lead to a loss of the robustness. And the stability of the closed-loop system with presented fourth-order homogeneous HOSM controller is also proved theoretically. Finally, simulation results are provided and analyzed to demonstrate the effectiveness of the proposed method in three typical engagement scenarios.


2016 ◽  
Vol 2016 ◽  
pp. 1-18
Author(s):  
Chang Luo ◽  
Jie Wang ◽  
Hanqiao Huang ◽  
Pengfei Wang

An approach of air-to-air autonomous attack occupation for Unmanned Combat Aerial Vehicles (UCAVs) is proposed to improve attack precision and combat effectiveness. According to the shortage of UCAV in the task of attack occupation, kinematic and dynamic models of UCAV and missile loaded on it are formed. Then, attack zone and no-escape zone are calculated by pattern search algorithm, and the optimum attack position is indicated. To arrive at the optimum attack position accurately with restriction of gesture, a novel adaptive sliding mode control method is suggested to design the integrated guidance and control system of UCAV in the process of autonomous attack occupation. Key parameters of the control system are adaptively regulated, which further economize control energy at the same time. The simulation results show that compared with traditional methods our approach can guide the UCAV to the optimum attack position with stable gesture and economize nearly 25% control energy.


Author(s):  
Xiang Liu ◽  
Xiaogeng Liang

In this study, an improved cooperative integrated guidance and control (IGC) design method is proposed based on distributed networks to address the guidance and control problem of multiple interceptor missiles. An IGC model for a leading interceptor is constructed based on the relative kinematic relations between missiles and a target and the kinematic equations of the missiles in a pitch channel. The unknown disturbances of the model are estimated using a finite-time disturbance observer (FTDO). Then, the control algorithm for the leading interceptor is designed according to the disturbance estimation and nonsingular fast dynamic surface sliding mode control (SMC). To enhance the rate of convergence of the cooperative control commands for the interceptors, an improved cooperative control strategy is proposed based on the leader-follower distributed network. Consequently, the two velocity components of the interceptor in the pitch channel can be obtained, which are subsequently converted to the total velocity and flight path angle commands of the interceptor using kinematic relations. The control algorithm for the following interceptor is similarly designed using an FTDO and dynamic surface SMC. The effectiveness of the improved distributed cooperative control strategy for multiple interceptors is validated through simulations.


Sign in / Sign up

Export Citation Format

Share Document