Feedback control law of solar sail with variable surface reflectivity at Sun-Earth collinear equilibrium points

2020 ◽  
Vol 106 ◽  
pp. 106144 ◽  
Author(s):  
Lorenzo Niccolai ◽  
Giovanni Mengali ◽  
Alessandro A. Quarta ◽  
Andrea Caruso
Author(s):  
Z. Q. Wu ◽  
P. Yu

In this paper, a new method is proposed for controlling bifurcations of nonlinear dynamical systems. This approach employs the idea used in deriving the transition variety sets of bifurcations with constraints to find the stability region of equilibrium points in parameter space. With this method, one can design, via a feedback control, appropriate parameter values to delay either static, or dynamic or both bifurcations as one wishes. The approach is applied to consider controlling bifurcations of the Ro¨ssler system. The uncontrolled Ro¨ssler has two equilibrium solutions, one of which exhibits static bifurcation while the other has Hopf bifurcation. When a feedback control based on the new method is applied, one can delay the bifurcations and even change the type of bifurcations. An optimal control law is obtained to stabilize the Ro¨ssler system using all feasible system parameter values. Numerical simulations are used to verify the analytical results.


Author(s):  
Xindong Si ◽  
Hongli Yang

AbstractThis paper deals with the Constrained Regulation Problem (CRP) for linear continuous-times fractional-order systems. The aim is to find the existence conditions of linear feedback control law for CRP of fractional-order systems and to provide numerical solving method by means of positively invariant sets. Under two different types of the initial state constraints, the algebraic condition guaranteeing the existence of linear feedback control law for CRP is obtained. Necessary and sufficient conditions for the polyhedral set to be a positive invariant set of linear fractional-order systems are presented, an optimization model and corresponding algorithm for solving linear state feedback control law are proposed based on the positive invariance of polyhedral sets. The proposed model and algorithm transform the fractional-order CRP problem into a linear programming problem which can readily solved from the computational point of view. Numerical examples illustrate the proposed results and show the effectiveness of our approach.


2016 ◽  
Vol 39 (3) ◽  
pp. 352-360 ◽  
Author(s):  
Xiaoyan Lin ◽  
Dongyun Lin ◽  
Weiyao Lan

The semi-global output regulation problem of multi-variable discrete-time singular linear systems with input saturation is investigated in this paper. A composite nonlinear feedback control law is constructed by using a low gain feedback technique for semi-global stabilisation of discrete-time singular linear systems with input saturation. The sufficient solvability conditions of the semi-global output regulation problem by composite nonlinear feedback control are established. When the composite nonlinear feedback control law is reduced to a linear control law, the solvability conditions are an exact discrete-time counterpart of the semi-global output regulation problem of continuous-time singular linear systems. With the extra control freedom of the nonlinear part in the composite nonlinear feedback control law, the transient performance of the closed-loop system can be improved by carefully choosing the linear feedback gain and the nonlinear feedback gain. The design procedure of the composite nonlinear feedback control law and the improvement of the transient performance are illustrated by a numerical example.


Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 751 ◽  
Author(s):  
Sajede Harraz ◽  
Shuang Cong

In this paper, we propose a Lyapunov-based state feedback control for state transfer based on the on-line quantum state estimation (OQSE). The OQSE is designed based on continuous weak measurements and compressed sensing. The controlled system is described by quantum master equation for open quantum systems, and the continuous measurement operators are derived according to the dynamic equation of system. The feedback control law is designed based on the Lyapunov stability theorem, and a strict proof of proposed control laws are given. At each sampling time, the state is estimated on-line, which is used to design the control law. The simulation experimental results show the effectiveness of the proposed feedback control strategy.


2020 ◽  
Vol 169 ◽  
pp. 224-239
Author(s):  
Wei Wang ◽  
Hexi Baoyin ◽  
Giovanni Mengali ◽  
Alessandro A. Quarta

Sign in / Sign up

Export Citation Format

Share Document