Pursuit-evasion game switching strategies for spacecraft with incomplete-information

2021 ◽  
pp. 107112
Author(s):  
Xu Tang ◽  
Dong Ye ◽  
Lei Huang ◽  
Zhaowei Sun ◽  
Jianye Sun
Aerospace ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 299
Author(s):  
Bin Yang ◽  
Pengxuan Liu ◽  
Jinglang Feng ◽  
Shuang Li

This paper presents a novel and robust two-stage pursuit strategy for the incomplete-information impulsive space pursuit-evasion missions considering the J2 perturbation. The strategy firstly models the impulsive pursuit-evasion game problem into a far-distance rendezvous stage and a close-distance game stage according to the perception range of the evader. For the far-distance rendezvous stage, it is transformed into a rendezvous trajectory optimization problem and a new objective function is proposed to obtain the pursuit trajectory with the optimal terminal pursuit capability. For the close-distance game stage, a closed-loop pursuit approach is proposed using one of the reinforcement learning algorithms, i.e., the deep deterministic policy gradient algorithm, to solve and update the pursuit trajectory for the incomplete-information impulsive pursuit-evasion missions. The feasibility of this novel strategy and its robustness to different initial states of the pursuer and evader and to the evasion strategies are demonstrated for the sun-synchronous orbit pursuit-evasion game scenarios. The results of the Monte Carlo tests show that the successful pursuit ratio of the proposed method is over 91% for all the given scenarios.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 211
Author(s):  
Ziwen Wang ◽  
Baichun Gong ◽  
Yanhua Yuan ◽  
Xin Ding

Aiming to solve the optimal control problem for the pursuit-evasion game with a space non-cooperative target under the condition of incomplete information, a new method degenerating the game into a strong tracking problem is proposed, where the unknown target maneuver is processed as colored noise. First, the relative motion is modeled in the rotating local vertical local horizontal (LVLH) frame originated at a virtual Chief based on the Hill-Clohessy-Wiltshire relative dynamics, while the measurement models for three different sensor schemes (i.e., single LOS (line-of-sight) sensor, LOS range sensor and double LOS sensor) are established and an extended Kalman Filter (EKF) is used to obtain the relative state of target. Next, under the assumption that the unknown maneuver of the target is colored noise, the game control law of chaser is derived based on the linear quadratic differential game theory. Furthermore, the optimal control law considering the thrust limitation is obtained. After that, the observability of the relative orbit state is analyzed, where the relative orbit is weakly observable in a short period of time in the case of only LOS angle measurements, fully observable in the cases of LOS range and double LOS measurement schemes. Finally, numerical simulations are conducted to verify the proposed method. The results show that by using the single LOS scheme, the chaser would firstly approach the target but then would lose the game because of the existence of the target’s unknown maneuver. Conversely, the chaser can successfully win the game in the cases of LOS range and double LOS sensor schemes.


2020 ◽  
Vol 53 (2) ◽  
pp. 14882-14887
Author(s):  
Yuan Chai ◽  
Jianjun Luo ◽  
Mingming Wang ◽  
Min Yu

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiao Liang ◽  
Honglun Wang ◽  
Haitao Luo

The UAV/UGV heterogeneous system combines the air superiority of UAV (unmanned aerial vehicle) and the ground superiority of UGV (unmanned ground vehicle). The system can complete a series of complex tasks and one of them is pursuit-evasion decision, so a collaborative strategy of UAV/UGV heterogeneous system is proposed to derive a pursuit-evasion game in complex three-dimensional (3D) polygonal environment, which is large enough but with boundary. Firstly, the system and task hypothesis are introduced. Then, an improved boundary value problem (BVP) is used to unify the terrain data of decision and path planning. Under the condition that the evader knows the position of collaborative pursuers at any time but pursuers just have a line-of-sight view, a worst case is analyzed and the strategy between the evader and pursuers is studied. According to the state of evader, the strategy of collaborative pursuers is discussed in three situations: evader is in the visual field of pursuers, evader just disappears from the visual field of pursuers, and the position of evader is completely unknown to pursuers. The simulation results show that the strategy does not guarantee that the pursuers will win the game in complex 3D polygonal environment, but it is optimal in the worst case.


Sign in / Sign up

Export Citation Format

Share Document