scholarly journals Atmospheric muon and neutrino fluxes at very high energy

2011 ◽  
Vol 34 (9) ◽  
pp. 663-673 ◽  
Author(s):  
José I. Illana ◽  
Paolo Lipari ◽  
Manuel Masip ◽  
Davide Meloni
2005 ◽  
Vol 20 (06) ◽  
pp. 1204-1211 ◽  
Author(s):  
J. JONES ◽  
I. MOCIOIU ◽  
I. SARCEVIC ◽  
M. H. RENO

Astrophysical sources of ultrahigh energy neutrinos yield tau neutrino fluxes due to neutrino oscillations. We study in detail the contribution of tau neutrinos with energies above 106 GeV relative to the contribution of the other flavors. We consider several different initial neutrino fluxes and include tau neutrino regeneration in transit through the Earth and energy loss of charged leptons. We discuss signals of tau neutrinos in detectors such as IceCube, RICE and ANITA.


2010 ◽  
Vol 25 (18n19) ◽  
pp. 3733-3740 ◽  
Author(s):  
S. I. SINEGOVSKY ◽  
A. A. KOCHANOV ◽  
T. S. SINEGOVSKAYA ◽  
A. MISAKI ◽  
N. TAKAHASHI

In the near future, the energy region above few hundreds of TeV may really be accessible for measurements of the atmospheric muon spectrum with IceCube array. Therefore, one expects that muon flux uncertainties above 50 TeV, related to a poor knowledge of charm production cross-sections and insufficiently examined primary spectra and composition, will be diminished. We give predictions for the very high-energy muon spectrum at sea level, obtained with the three hadronic interaction models, taking into account also the muon contribution due to decays of the charmed hadrons.


1964 ◽  
Vol 82 (1) ◽  
pp. 3-81 ◽  
Author(s):  
Evgenii L. Feinberg ◽  
Dmitrii S. Chernavskii

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Whitmore ◽  
R. I. Mackay ◽  
M. van Herk ◽  
J. K. Jones ◽  
R. M. Jones

AbstractThis paper presents the first demonstration of deeply penetrating dose delivery using focused very high energy electron (VHEE) beams using quadrupole magnets in Monte Carlo simulations. We show that the focal point is readily modified by linearly changing the quadrupole magnet strength only. We also present a weighted sum of focused electron beams to form a spread-out electron peak (SOEP) over a target region. This has a significantly reduced entrance dose compared to a proton-based spread-out Bragg peak (SOBP). Very high energy electron (VHEE) beams are an exciting prospect in external beam radiotherapy. VHEEs are less sensitive to inhomogeneities than proton and photon beams, have a deep dose reach and could potentially be used to deliver FLASH radiotherapy. The dose distributions of unfocused VHEE produce high entrance and exit doses compared to other radiotherapy modalities unless focusing is employed, and in this case the entrance dose is considerably improved over existing radiations. We have investigated both symmetric and asymmetric focusing as well as focusing with a range of beam energies.


1981 ◽  
Vol 8 (3) ◽  
pp. 205-213 ◽  
Author(s):  
Kisei Kinoshita ◽  
Akira Minaka ◽  
Hiroyuki Sumiyoshi

2013 ◽  
Vol 777 (1) ◽  
pp. L18 ◽  
Author(s):  
Y. T. Tanaka ◽  
C. C. Cheung ◽  
Y. Inoue ◽  
Ł. Stawarz ◽  
M. Ajello ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document