Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: Assessment by optical coherence tomography study

2009 ◽  
Vol 202 (2) ◽  
pp. 491-497 ◽  
Author(s):  
Shigeho Takarada ◽  
Toshio Imanishi ◽  
Takashi Kubo ◽  
Takashi Tanimoto ◽  
Hironori Kitabata ◽  
...  
Author(s):  
Takashi Kubo ◽  
Yasushi Ino ◽  
Gary S Mintz ◽  
Yasutsugu Shiono ◽  
Kunihiro Shimamura ◽  
...  

Abstract Aims The ability of optical coherence tomography (OCT) to detect plaques at high risk of developing acute coronary syndrome (ACS) remains unclear. The aim of this study was to evaluate the association between non-culprit plaques characterized as both lipid-rich plaque (LRP) and thin-cap fibroatheroma (TCFA) by OCT and the risk of subsequent ACS events at the lesion level. Methods and results In 1378 patients who underwent OCT, 3533 non-culprit plaques were analysed for the presence of LRP (maximum lipid arc > 180°) and TCFA (minimum fibrous cap thickness < 65 μm). The median follow-up period was 6 years [interquartile range (IQR): 5–9 years]. Seventy-two ACS arose from non-culprit plaques imaged by baseline OCT. ACS was more often associated with lipidic plaques that were characterized as both LRP and TCFA vs. lipidic plaques that did not have these characteristics [33% vs. 2%, hazard ratio 19.14 (95% confidence interval: 11.74–31.20), P < 0.001]. The sensitivity and specificity of the presence of both LRP and TCFA for predicting ACS was 38% and 97%, respectively. A larger maximum lipid arc [1.01° (IQR: 1.01–1.01°)], thinner minimum fibrous cap thickness [0.99 μm (IQR: 0.98–0.99 μm)], and smaller minimum lumen area [0.78 mm2 (IQR: 0.67–0.90 mm2), P < 0.001] were independently associated with ACS. Conclusion Non-culprit plaques characterized by OCT as both LRP and TCFA were associated with an increased risk of subsequent ACS at the lesion level. Therefore, OCT might be able to detect vulnerable plaques.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
Y Fukuyama ◽  
H Otake ◽  
F Seike ◽  
H Kawamori ◽  
T Toba ◽  
...  

Abstract Background The direct relationship between plaque rupture (PR) that cause acute coronary syndrome (ACS) and wall shear stress (WSS) remains uncertain. Methods From the Kobe University ACS-OCT registry, one hundred ACS patients whose culprit lesions had PR documented by optical coherence tomography (OCT) were enrolled. Lesion-specific 3D coronary artery models were created using OCT data. Specifically, at the ruptured portion, the tracing of the luminal edge of the residual fibrous cap was smoothly extrapolated to reconstruct the luminal contour before PR. Then, WSS was computed from computational fluid dynamics (CFD) analysis by a single core laboratory. Relationships between WSS and the location of PR were assessed with 1) longitudinal 3-mm segmental analysis and 2) circumferential analysis. In the longitudinal segmental analysis, each culprit lesion was subdivided into five 3-mm segments with respect to the minimum lumen area (MLA) location at the centered segment (Figure. 1). In the circumferential analysis, we measured WSS values at five points from PR site and non-PR site on the cross-sections with PR. Also, each ruptured plaque was categorized into the lateral type PR (L-PR), central type PR (C-PR), and others according to the relation between the site of tearing and the cavity (Figure. 2). Results In the longitudinal 3-mm segmental analysis, the incidences of PR at upstream (UP1 and 2), MLA, and downstream (DN1 and 2) were 45%, 40%, and 15%, respectively. The highest average WSS was located in UP1 in the upstream PR (UP1: 15.5 (10.4–26.3) vs. others: 6.8 (3.3–14.7) Pa, p<0.001) and MLA segment in the MLA PR (MLA: 18.8 (6.0–34.3) vs. others: 6.5 (3.1–11.8) Pa, p<0.001), and the second highest WSS was located at DN1 in the downstream PR (DN1: 5.8 (3.7–11.5) vs. others: 5.5 (3.7–16.5) Pa, p=0.035). In the circumferential analysis, the average WSS at PR site was significantly higher than that of non-PR site (18.7 (7.2–35.1) vs. 13.9 (5.2–30.3) Pa, p<0.001). The incidence of L-PR, C-PR, and others were 51%, 42%, and 7%, respectively. In the L-PR, the peak WSS was most frequently observed in the lateral site (66.7%), whereas that in the C-PR was most frequently observed in the center site (70%) (Figure. 3). In the L-PR, the peak WSS value was significantly lower (44.6 (19.6–65.2) vs. 84.7 (36.6–177.5) Pa, p<0.001), and the thickness of broken fibrous cap was significantly thinner (40 (30–50) vs. 80 (67.5–100) μm, p<0.001), and the lumen area at peak WSS site was significantly larger than those of C-PR (1.5 (1.3–2.0) vs. 1.4 (1.1–1.6) mm2, p=0.008). Multivariate analysis demonstrated that the presence of peak WSS at lateral site, thinner broken fibrous cap thickness, and larger lumen area at peak WSS site were independently associated with the development of the L-PR. Conclusions A combined approach with CFD simulation and morphological plaque evaluation by using OCT might be helpful to predict future ACS events induced by PR. Funding Acknowledgement Type of funding source: None


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Akihiro Nakajima ◽  
Yoshiyasu Minami ◽  
Makoto Araki ◽  
Osamu Kurihara ◽  
Tsunenari Soeda ◽  
...  

Background Specific plaque phenotypes that predict a favorable response to statin therapy have not been systematically studied. This study aimed to identify optical coherence tomography predictors for a favorable vascular response to statin therapy. Methods and Results Patients who had serial optical coherence tomography imaging at baseline and at 6 months were included. Thin‐cap area (defined as an area with fibrous cap thickness <200 μm) was measured using a 3‐dimensional computer‐aided algorithm, and changes in the thin‐cap area at 6 months were calculated. A favorable vascular response was defined as the highest tertile in the degree of reduction of the thin‐cap area. Macrophage index was defined as the product of the average macrophage arc and length of the lesion with macrophage infiltration. Layered plaque was defined as a plaque with 1 or more layers of different optical density. In 84 patients, 140 nonculprit lipid plaques were identified. In multivariable analysis, baseline thin‐cap area (odds ratio [OR] 1.442; 95% CI, 1.024–2.031, P =0.036), macrophage index (OR, 1.031; 95% CI, 1.002–1.061, P =0.036), and layered plaque (OR, 2.767; 95% CI, 1.024–7.479, P =0.045) were identified as the significant predictors for a favorable vascular response. Favorable vascular response was associated with a decrease in the macrophage index. Conclusions Three optical coherence tomography predictors for a favorable vascular response to statin therapy have been identified: large thin‐cap area, high macrophage index, and layered plaque. Favorable vascular response to statin was correlated with signs of decreased inflammation. Registration URL: https://www.clinicaltrials.gov ; Unique identifier: NCT01110538.


2020 ◽  
Vol 9 (16) ◽  
Author(s):  
Yoko Kita ◽  
Makoto Watanabe ◽  
Daisuke Kamon ◽  
Tomoya Ueda ◽  
Tsunenari Soeda ◽  
...  

BACKGROUND Vascular healing response associated with adjunctive n‐3 polyunsaturated fatty acid therapy therapy in patients receiving strong statin therapy remains unclear. The aim of this study was to evaluate the effect of polyunsaturated fatty acid therapy with eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) in addition to strong statin therapy on coronary atherosclerotic plaques using optical coherence tomography. METHODS AND RESULTS This prospective multicenter randomized controlled trial included 130 patients with acute coronary syndrome treated with strong statins. They were assigned to either statin only (control group, n=42), statin+high‐dose EPA (1800 mg/day) (EPA group, n=40), statin+EPA (930 mg/day)+DHA (750 mg/day) (EPA+DHA group, n=48). Optical coherence tomography was performed at baseline and at the 8‐month follow‐up. The target for optical coherence tomography analysis was a nonculprit lesion with a lipid plaque. Between baseline and the 8‐month follow‐up, fibrous cap thickness (FCT) significantly increased in all 3 groups. There were no significant differences in the percent change for minimum FCT between the EPA or EPA+DHA group and the control group. In patients with FCT <120 µm (median value), the percent change for minimum FCT was significantly higher in the EPA or EPA+DHA group compared with the control group. CONCLUSIONS EPA or EPA+DHA therapy in addition to strong statin therapy did not significantly increase FCT in nonculprit plaques compared with strong statin therapy alone, but significantly increased FCT in patients with thinner FCT. Registration URL: https://www.umin.ac.jp/ctr/ ; Unique identifier: UMIN 000012825.


Sign in / Sign up

Export Citation Format

Share Document