Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols

2012 ◽  
Vol 61 ◽  
pp. 562-569 ◽  
Author(s):  
Roberta Cerasi Urban ◽  
Michele Lima-Souza ◽  
Letícia Caetano-Silva ◽  
Maria Eugênia C. Queiroz ◽  
Raquel F.P. Nogueira ◽  
...  
2019 ◽  
Author(s):  
Jing Cai ◽  
Xiangying Zeng ◽  
Guorui Zhi ◽  
Sasho Gligorovski ◽  
Guoying Sheng ◽  
...  

Abstract. Photochemistry plays an important role in the evolution of atmospheric water soluble organic carbon (WSOC), which dissolves into clouds, fogs and aerosol liquid water. In this study, we examined the molecular composition and evolution of a WSOC mixture extracted from fresh biomass burning aerosols upon photolysis, using direct infusion electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and liquid chromatography coupled with mass spectrometry (LC/ESI-HRMS). For comparison, two typical phenolic compounds (i.e., phenol and guaiacol) emitted from lignin pyrolysis in combination with hydrogen peroxide (H2O2) as a typical OH radical precursor, were exposed to simulated sunlight irradiation. The photochemistry of both, the phenols (photo-oxidation) and WSOC mixture (direct photolysis) can produce a series of highly oxygenated compounds which in turn increases the degree of oxidation of organic composition and acidity of the bulk solution. In particular, the LC/ESI-HRMS technique revealed significant photochemical evolution on the WSOC composition, e.g., the photodegradation of low oxygenated species and the formation of highly oxygenated products. We also tentatively compared the mass spectra of photolytic time-profile extract with each other for a more comprehensive description of the photolytic evolution. The calculated average oxygen-to-carbon (O / C) ratios of oxygenated compounds in bulk extract increases from 0.38 ± 0.02 to 0.44 ± 0.02 (mean±standard deviation) while the intensity (S / N)-weighted average O / C (O / Cw) increases from 0.45 ± 0.03 to 0.53 ± 0.06 as the time of irradiation extends from 0 to 12 h. These findings indicate that the water soluble organic fraction of fresh combustion-derived aerosols have the potential to form more oxidized organic matter, accounting for the highly oxygenated nature of atmospheric organic aerosols.


2011 ◽  
Vol 11 (22) ◽  
pp. 11497-11510 ◽  
Author(s):  
Y. Cheng ◽  
K.-B. He ◽  
M. Zheng ◽  
F.-K. Duan ◽  
Z.-Y. Du ◽  
...  

Abstract. The mass absorption efficiency (MAE) of elemental carbon (EC) in Beijing was quantified using a thermal-optical carbon analyzer. The MAE measured at 632 nm was 8.45±1.71 and 9.41±1.92 m2 g−1 during winter and summer respectively. The daily variation of MAE was found to coincide with the abundance of organic carbon (OC), especially the OC to EC ratio, perhaps due to the enhancement by coating with organic aerosol (especially secondary organic aerosol, SOA) or the artifacts resulting from the redistribution of liquid-like organic particles during the filter-based absorption measurements. Using a converting approach that accounts for the discrepancy caused by measurements methods of both light absorption and EC concentration, previously published MAE values were converted to the equivalent-MAE, which is the estimated value if using the same measurement methods as used in this study. The equivalent-MAE was found to be much lower in the regions heavily impacted by biomass burning (e.g., below 2.7 m2 g−1 for two Indian cities). Results from source samples (including diesel exhaust samples and biomass smoke samples) also demonstrated that emissions from biomass burning would decrease the MAE of EC. Moreover, optical properties of water-soluble organic carbon (WSOC) in Beijing were presented. Light absorption by WSOC exhibited strong wavelength (λ) dependence such that absorption varied approximately as λ−7, which was characteristic of the brown carbon spectra. The MAE of WSOC (measured at 365 nm) was 1.79±0.24 and 0.71±0.20 m2 g−1 during winter and summer respectively. The large discrepancy between the MAE of WSOC during winter and summer was attributed to the difference in the precursors of SOA such that anthropogenic volatile organic compounds (AVOCs) should be more important as the precursors of SOA in winter. The MAE of WSOC in Beijing was much higher than results from the southeastern United States which were obtained using the same method as used in this study, perhaps due to the stronger emissions of biomass burning in China.


2021 ◽  
Vol 21 (15) ◽  
pp. 11815-11828
Author(s):  
Nana Suto ◽  
Hiroto Kawashima

Abstract. The sources and seasonal trends of water-soluble organic carbon (WSOC) in carbonaceous aerosols are of significant interest. From July 2017 to July 2019, we collected samples of PM2.5 (particulate matter, aerodynamic diameter<2.5 µm) from one suburban and one rural site in Japan. The average δ13CWSOC was -25.2±1.1 ‰ and -24.6±2.4 ‰ at the suburban site and rural site, respectively. At the suburban site, the δ13CWSOC was consistent with the δ13C of burned C3 plants, and a high correlation was found between WSOC concentrations and non-sea-salt potassium concentrations; these results suggest that the main source of WSOC at this site was biomass burning of rice straw. At the rural site, the average δ13CWSOC was significantly heavier from autumn to spring (-23.9±2.1 ‰) than in summer (-27.4±0.7 ‰) (p<0.01). The δ13CWSOC from autumn to spring was consistent with that of biomass burning of rice straw, whereas that in summer was considered to reflect mainly the formation of secondary organic aerosols from biogenic volatile organic compounds (VOCs). The heaviest δ13CWSOC (-21.3±1.9 ‰) was observed from February to April 2019, which may be explained by long-range transport of C4 plant burning such as corn from overseas. Thus, the present study indicates that δ13CWSOC is potentially useful for elucidating the sources and atmospheric processes that contribute to seasonal variations of WSOC concentration.


2014 ◽  
Vol 14 (12) ◽  
pp. 6075-6088 ◽  
Author(s):  
M.-C. G. Chalbot ◽  
J. Brown ◽  
P. Chitranshi ◽  
G. Gamboa da Costa ◽  
E. D. Pollock ◽  
...  

Abstract. The chemical content of water-soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for periods when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with dp > 0.96 μm and 10% of particle mass for particles with dp < 0.96 μm. Non-exchangeable aliphatic (H–C), unsaturated aliphatic (H–C–C=), oxygenated saturated aliphatic (H–C–O), acetalic (O–CH–O) and aromatic (Ar–H) protons were determined by proton nuclear magnetic resonance (1H-NMR). The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m−3 for particles with 1.5 < dp < 3.0 μm to 73.9 ± 12.3 nmol m−3 for particles with dp < 0.49 μm. The molar H / C ratios varied from 0.48 ± 0.05 to 0.92 ± 0.09, which were comparable to those observed for combustion-related organic aerosol. The R–H was the most abundant group, representing about 45% of measured total non-exchangeable organic hydrogen concentrations, followed by H–C–O (27%) and H–C–C= (26%). Levoglucosan, amines, ammonium and methanesulfonate were identified in NMR fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of 1H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosols and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ13C abundance from −26.81 ± 0.18‰ for the smallest particles to −25.93 ± 0.31‰ for the largest particles and the relative distribution of the functional groups as compared to those previously observed for marine, biomass burning and secondary organic aerosol. The latter also allowed for the differentiation of urban combustion-related aerosol and biological particles. The five types of organic hydrogen accounted for the majority of WSOC for particles with dp > 3.0 μm and dp < 0.96 μm.


2020 ◽  
Vol 20 (10) ◽  
pp. 6115-6128
Author(s):  
Jing Cai ◽  
Xiangying Zeng ◽  
Guorui Zhi ◽  
Sasho Gligorovski ◽  
Guoying Sheng ◽  
...  

Abstract. Photochemistry plays an important role in the evolution of atmospheric water-soluble organic carbon (WSOC), which dissolves into clouds, fogs, and aerosol liquid water. In this study, we tentatively examined the molecular composition and evolution of a WSOC mixture extracted from field-collected wheat straw burning aerosol (WSBA) samples upon photolysis, using direct infusion electrospray ionisation (ESI) coupled to high-resolution mass spectrometry (HRMS) and liquid chromatography (LC) coupled with HRMS. For comparison, two typical phenolic compounds (i.e. phenol and guaiacol) emitted from lignin pyrolysis in combination with hydrogen peroxide (H2O2) as a typical OH radical precursor were simultaneously exposed to simulated sunlight irradiation. Their photochemical products such as phenolic dimers (e.g. m∕z 185.0608 for phenol dimer and m∕z 245.0823 for guaiacol dimer) or their isomers, were also observed in field-collected WSBA samples, suggesting that the aqueous-phase reactions might contribute to the formation of emitted biomass burning aerosols. The aqueous photochemistry of both the phenols (photooxidation) and WSBA extracts (direct photolysis) could produce a series of highly oxygenated compounds, which in turn increases the oxidation degree of organic composition and acidity of the bulk solution. In particular, the LC/ESI-HRMS technique revealed significant photochemical evolution of the WSOC composition in WSBA samples, e.g. the photodegradation of low oxygenated species and the formation of highly oxygenated products. We also tentatively compared the mass spectra of photolytic time-profile WSBA extracts with each other for a more comprehensive description of the photolytic evolution. The calculated average oxygen-to-carbon ratio (O∕C) of oxygenated compounds in bulk extract increases from 0.38±0.02 to 0.44±0.02 (mean ± standard deviation), while the intensity (S∕N)-weighted average O∕C (O∕Cw) increases from 0.45±0.03 to 0.53±0.06 as the time of irradiation extends from 0 to 12 h. These findings indicate that the water-soluble organic fraction of combustion-derived aerosols has the potential to form more oxidised organic matter, contributing to the highly oxygenated nature of atmospheric organic aerosols.


2011 ◽  
Vol 11 (2) ◽  
pp. 6221-6258
Author(s):  
Y. Cheng ◽  
K.-B. He ◽  
M. Zheng ◽  
F.-K. Duan ◽  
Y.-L. Ma ◽  
...  

Abstract. The mass absorption cross-section (MAC) of elemental carbon (EC) in Beijing was quantified using a thermal-optical carbon analyzer and the influences of mixing state and sources of carbonaceous aerosol were investigated. The MAC measured at 632 nm was 29.0 and 32.0 m2 g−1 during winter and summer respectively. MAC correlated well with the organic carbon (OC) to EC ratio (R2 = 0.91) which includes important information about the extent of secondary organic aerosol (SOA) production, indicating the enhancement of MAC by coating with SOA. The extrapolated MAC value was 10.5 m2 g−1 when the OC to EC ratio is zero, which was 5.6 m2 g−1 after correction by the enhancement factor (1.87) caused by the artifacts associated with the "filter-based" methods. The MAC also increased with sulphate (R2 = 0.84) when the sulphate concentration was below 10 μg m−3, whereas MAC and sulphate were only weekly related when the sulphate concentration was above 10 μg m−3, indicating the MAC of EC was also enhanced by coating with sulphate. Based on a converting approach that accounts for the discrepancy caused by measurements methods of both light absorption and EC concentration, previously published MAC values were converted to the "equivalent MAC", which is the estimated value if using the same measurement methods as used in this study. The "equivalent MAC" was found to be much lower in the regions heavily impacted by biomass burning (e.g., India), probably due to the influence of brown carbon. Optical properties of water-soluble organic carbon (WSOC) in Beijing were also presented. Light absorption by WSOC exhibited strong wavelength (λ) dependence such that absorption varied approximately as λ−7, which was characteristic of the brown carbon spectra. The mass absorption efficiency (σabs) of WSOC (measured at 365 nm) was 1.83 and 0.70 m2 g−1 during winter and summer respectively. The seasonal pattern of σabs was attributed to the difference in the precursors of SOA, because WSOC in Beijing has been demonstrated to be strongly linked to SOA. Moreover, the σabs of WSOC in Beijing was much higher than results from the southeastern United States which were obtained using the same method as used in this study, perhaps due to the influence of biomass burning.


Sign in / Sign up

Export Citation Format

Share Document