scholarly journals Optical properties of elemental carbon and water-soluble organic carbon in Beijing, China

2011 ◽  
Vol 11 (2) ◽  
pp. 6221-6258
Author(s):  
Y. Cheng ◽  
K.-B. He ◽  
M. Zheng ◽  
F.-K. Duan ◽  
Y.-L. Ma ◽  
...  

Abstract. The mass absorption cross-section (MAC) of elemental carbon (EC) in Beijing was quantified using a thermal-optical carbon analyzer and the influences of mixing state and sources of carbonaceous aerosol were investigated. The MAC measured at 632 nm was 29.0 and 32.0 m2 g−1 during winter and summer respectively. MAC correlated well with the organic carbon (OC) to EC ratio (R2 = 0.91) which includes important information about the extent of secondary organic aerosol (SOA) production, indicating the enhancement of MAC by coating with SOA. The extrapolated MAC value was 10.5 m2 g−1 when the OC to EC ratio is zero, which was 5.6 m2 g−1 after correction by the enhancement factor (1.87) caused by the artifacts associated with the "filter-based" methods. The MAC also increased with sulphate (R2 = 0.84) when the sulphate concentration was below 10 μg m−3, whereas MAC and sulphate were only weekly related when the sulphate concentration was above 10 μg m−3, indicating the MAC of EC was also enhanced by coating with sulphate. Based on a converting approach that accounts for the discrepancy caused by measurements methods of both light absorption and EC concentration, previously published MAC values were converted to the "equivalent MAC", which is the estimated value if using the same measurement methods as used in this study. The "equivalent MAC" was found to be much lower in the regions heavily impacted by biomass burning (e.g., India), probably due to the influence of brown carbon. Optical properties of water-soluble organic carbon (WSOC) in Beijing were also presented. Light absorption by WSOC exhibited strong wavelength (λ) dependence such that absorption varied approximately as λ−7, which was characteristic of the brown carbon spectra. The mass absorption efficiency (σabs) of WSOC (measured at 365 nm) was 1.83 and 0.70 m2 g−1 during winter and summer respectively. The seasonal pattern of σabs was attributed to the difference in the precursors of SOA, because WSOC in Beijing has been demonstrated to be strongly linked to SOA. Moreover, the σabs of WSOC in Beijing was much higher than results from the southeastern United States which were obtained using the same method as used in this study, perhaps due to the influence of biomass burning.

2011 ◽  
Vol 11 (22) ◽  
pp. 11497-11510 ◽  
Author(s):  
Y. Cheng ◽  
K.-B. He ◽  
M. Zheng ◽  
F.-K. Duan ◽  
Z.-Y. Du ◽  
...  

Abstract. The mass absorption efficiency (MAE) of elemental carbon (EC) in Beijing was quantified using a thermal-optical carbon analyzer. The MAE measured at 632 nm was 8.45±1.71 and 9.41±1.92 m2 g−1 during winter and summer respectively. The daily variation of MAE was found to coincide with the abundance of organic carbon (OC), especially the OC to EC ratio, perhaps due to the enhancement by coating with organic aerosol (especially secondary organic aerosol, SOA) or the artifacts resulting from the redistribution of liquid-like organic particles during the filter-based absorption measurements. Using a converting approach that accounts for the discrepancy caused by measurements methods of both light absorption and EC concentration, previously published MAE values were converted to the equivalent-MAE, which is the estimated value if using the same measurement methods as used in this study. The equivalent-MAE was found to be much lower in the regions heavily impacted by biomass burning (e.g., below 2.7 m2 g−1 for two Indian cities). Results from source samples (including diesel exhaust samples and biomass smoke samples) also demonstrated that emissions from biomass burning would decrease the MAE of EC. Moreover, optical properties of water-soluble organic carbon (WSOC) in Beijing were presented. Light absorption by WSOC exhibited strong wavelength (λ) dependence such that absorption varied approximately as λ−7, which was characteristic of the brown carbon spectra. The MAE of WSOC (measured at 365 nm) was 1.79±0.24 and 0.71±0.20 m2 g−1 during winter and summer respectively. The large discrepancy between the MAE of WSOC during winter and summer was attributed to the difference in the precursors of SOA such that anthropogenic volatile organic compounds (AVOCs) should be more important as the precursors of SOA in winter. The MAE of WSOC in Beijing was much higher than results from the southeastern United States which were obtained using the same method as used in this study, perhaps due to the stronger emissions of biomass burning in China.


2011 ◽  
Vol 11 (9) ◽  
pp. 24727-24764 ◽  
Author(s):  
Y. Cheng ◽  
K.-B. He ◽  
M. Zheng ◽  
F.-K. Duan ◽  
Y.-L. Ma ◽  
...  

Abstract. The mass absorption efficiency (MAE) of elemental carbon (EC) in Beijing was quantified using a thermal-optical carbon analyzer. The MAE measured at 632 nm was 8.45 ± 1.71 and 9.41 ± 1.92 m2 g−1 during winter and summer, respectively. The daily variation of MAE was found to coincide with the OC (organic carbon) abundance, especially the OC to EC ratio, perhaps due to the enhancement by coating with organic aerosol (especially secondary organic aerosol, SOA) or the artifacts resulting from the redistribution of liquid-like organic particles during the filter-based absorption measurements. Using a converting approach that accounts for the discrepancy caused by measurements methods of both light absorption and EC concentration, previously published MAE values were converted to the equivalent MAE, which is the estimated value if using the same measurement methods as used in this study. The equivalent MAE was found to be much lower in the regions heavily impacted by biomass burning (e.g., India), probably due to the influence of brown carbon. Optical properties of water-soluble organic carbon (WSOC) in Beijing were also presented. Light absorption by WSOC exhibited strong wavelength (λ) dependence such that absorption varied approximately as λ−7, which was characteristic of the brown carbon spectra. The MAE of WSOC (measured at 365 nm) was 1.83 and 0.70 m2 g−1 during winter and summer, respectively. WSOC in Beijing has been demonstrated to be strongly linked to SOA; and the seasonal pattern of its MAE was attributed to the difference in the precursors of SOA such that anthropogenic volatile organic compounds (AVOCs) should be more important as the precursors of SOA in winter. Moreover, the MAE of WSOC in Beijing was much higher than results from the southeastern United States which were obtained using the same method as used in this study, perhaps due to the influence of biomass burning.


2020 ◽  
Author(s):  
Jianzhong Song ◽  
Meiju Li ◽  
Xingjun Fan ◽  
Peng'an Peng

<p>Brown carbon (BrC) is a type of light-absorbing organic compounds with a high capacity to absorb light in the low-wavelength visible and near-ultraviolet regions, which is ubiquitous in atmospheric aerosols, rainwater, and cloudwater samples. BrC can not only alter the light absorption and radiative forcing of aerosols but can also influence the formation of cloud condensation nuclei; therefore, it has a potential impact on atmospheric chemistry and climate change. Numerous studies have demonstrated that combustion processes are significant sources of atmospheric BrC, however most of these studies were focused on the emissions of biomass burning. Knowledge of primary BrC from coal combustion is still limited. In the study, smoke particles emitted from the combustion of residential coals with different geological maturity were collected in a combustion system. Then BrC fractions, including water soluble organic carbon (WSOC), water soluble humic-like substances (HULIS<sub>w</sub>), alkaline soluble organic carbon (ASOC) and methanol soluble organic carbon (MSOC) were extracted and characterized for their abundances, chemical, and light absorption properties.</p><p> </p><p>Our results showed that the abundance and light absorption of the coal combustion-derived BrC fractions were strongly dependent on the extraction methods used and the coal maturity. The abundances of MSOC fraction was significantly higher than WSOC and ASOC fractions and even higher than the sum of WSOC and ASOC, indicating that most organic compounds in smoke particles were soluble in pure methanol. The WSOC and MSOC fractions from the combustion of low maturity coal had relatively low SUVA<sub>254</sub> and MAE<sub>365</sub> values, indicated that they had relatively low levels of aromatic structures and light absorption.</p><p> </p><p>The WSOC and MSOC fractions were characterized by ultrahigh-resolution mass spectrometry. The results showed that S-containing compounds (CHOS and CHONS) are found to be the dominant components of the WSOC, whereas CHO and CHON compounds make a great contribution to the MSOC samples. Noted that a greater abundance of S-containing compounds was found in the smoke produced from coal combustion compared to biomass burning and atmospheric samples, indicated that coal combustion could be an important source of atmospheric S-containing compounds in certain areas. The findings also suggest that organic molecules with a high aromaticity index and low polarity showed stronger light absorption. In summary, our study indicated that coal combustion is a potential source of atmospheric BrC and their abundance, chemical, and light absorption were strongly dependent on the extraction methods used and the coal maturity.</p>


2014 ◽  
Vol 119 (6) ◽  
pp. 3476-3485 ◽  
Author(s):  
Elena N. Kirillova ◽  
August Andersson ◽  
Suresh Tiwari ◽  
Atul Kumar Srivastava ◽  
Deewan Singh Bisht ◽  
...  

2019 ◽  
Author(s):  
Jing Cai ◽  
Xiangying Zeng ◽  
Guorui Zhi ◽  
Sasho Gligorovski ◽  
Guoying Sheng ◽  
...  

Abstract. Photochemistry plays an important role in the evolution of atmospheric water soluble organic carbon (WSOC), which dissolves into clouds, fogs and aerosol liquid water. In this study, we examined the molecular composition and evolution of a WSOC mixture extracted from fresh biomass burning aerosols upon photolysis, using direct infusion electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and liquid chromatography coupled with mass spectrometry (LC/ESI-HRMS). For comparison, two typical phenolic compounds (i.e., phenol and guaiacol) emitted from lignin pyrolysis in combination with hydrogen peroxide (H2O2) as a typical OH radical precursor, were exposed to simulated sunlight irradiation. The photochemistry of both, the phenols (photo-oxidation) and WSOC mixture (direct photolysis) can produce a series of highly oxygenated compounds which in turn increases the degree of oxidation of organic composition and acidity of the bulk solution. In particular, the LC/ESI-HRMS technique revealed significant photochemical evolution on the WSOC composition, e.g., the photodegradation of low oxygenated species and the formation of highly oxygenated products. We also tentatively compared the mass spectra of photolytic time-profile extract with each other for a more comprehensive description of the photolytic evolution. The calculated average oxygen-to-carbon (O / C) ratios of oxygenated compounds in bulk extract increases from 0.38 ± 0.02 to 0.44 ± 0.02 (mean±standard deviation) while the intensity (S / N)-weighted average O / C (O / Cw) increases from 0.45 ± 0.03 to 0.53 ± 0.06 as the time of irradiation extends from 0 to 12 h. These findings indicate that the water soluble organic fraction of fresh combustion-derived aerosols have the potential to form more oxidized organic matter, accounting for the highly oxygenated nature of atmospheric organic aerosols.


2019 ◽  
Vol 19 (17) ◽  
pp. 11213-11233 ◽  
Author(s):  
Xiaoyan Liu ◽  
Yan-Lin Zhang ◽  
Yiran Peng ◽  
Lulu Xu ◽  
Chunmao Zhu ◽  
...  

Abstract. Biomass burning can significantly impact the chemical and optical properties of carbonaceous aerosols. Here, the biomass burning impacts were studied during wintertime in a megacity of Nanjing, eastern China. The high abundance of biomass burning tracers such as levoglucosan (lev), mannosan (man), galactosan (gal) and non-sea-salt potassium (nss-K+) was found during the studied period with the concentration ranges of 22.4–1476 ng m−3, 2.1–56.2 ng m−3, 1.4–32.2 ng m−3 and 0.2–3.8 µg m−3, respectively. The significant contribution of biomass burning to water-soluble organic carbon (WSOC; 22.3±9.9 %) and organic carbon (OC; 20.9±9.3 %) was observed in this study. Backward air mass origin analysis, potential emission sensitivity of elemental carbon (EC) and MODIS fire spot information indicated that the elevations of the carbonaceous aerosols were due to the transported biomass-burning aerosols from southeastern China. The characteristic mass ratio maps of lev∕man and lev∕nss-K+ suggested that the biomass fuels were mainly crop residuals. Furthermore, the strong correlation (p < 0.01) between biomass burning tracers (such as lev) and light absorption coefficient (babs) for water-soluble brown carbon (BrC) revealed that biomass burning emissions played a significant role in the light-absorption properties of carbonaceous aerosols. The solar energy absorption due to water-soluble brown carbon and EC was estimated by a calculation based on measured light-absorbing parameters and a simulation based on a radiative transfer model (RRTMG_SW). The solar energy absorption of water-soluble BrC in short wavelengths (300–400 nm) was 0.8±0.4 (0.2–2.3) W m−2 (figures in parentheses represent the variation range of each parameter) from the calculation and 1.2±0.5 (0.3–1.9) W m−2 from the RRTMG_SW model. The absorption capacity of water-soluble BrC accounted for about 20 %–30 % of the total absorption of EC aerosols. The solar energy absorption of water-soluble BrC due to biomass burning was estimated as 0.2±0.1 (0.0–0.9) W m−2, considering the biomass burning contribution to carbonaceous aerosols. Potential source contribution function model simulations showed that the solar energy absorption induced by water-soluble BrC and EC aerosols was mostly due to the regionally transported carbonaceous aerosols from source regions such as southeastern China. Our results illustrate the importance of the absorbing water-soluble brown carbon aerosols in trapping additional solar energy in the low-level atmosphere, heating the surface and inhibiting the energy from escaping the atmosphere.


2012 ◽  
Vol 61 ◽  
pp. 562-569 ◽  
Author(s):  
Roberta Cerasi Urban ◽  
Michele Lima-Souza ◽  
Letícia Caetano-Silva ◽  
Maria Eugênia C. Queiroz ◽  
Raquel F.P. Nogueira ◽  
...  

2021 ◽  
Vol 21 (15) ◽  
pp. 11815-11828
Author(s):  
Nana Suto ◽  
Hiroto Kawashima

Abstract. The sources and seasonal trends of water-soluble organic carbon (WSOC) in carbonaceous aerosols are of significant interest. From July 2017 to July 2019, we collected samples of PM2.5 (particulate matter, aerodynamic diameter<2.5 µm) from one suburban and one rural site in Japan. The average δ13CWSOC was -25.2±1.1 ‰ and -24.6±2.4 ‰ at the suburban site and rural site, respectively. At the suburban site, the δ13CWSOC was consistent with the δ13C of burned C3 plants, and a high correlation was found between WSOC concentrations and non-sea-salt potassium concentrations; these results suggest that the main source of WSOC at this site was biomass burning of rice straw. At the rural site, the average δ13CWSOC was significantly heavier from autumn to spring (-23.9±2.1 ‰) than in summer (-27.4±0.7 ‰) (p<0.01). The δ13CWSOC from autumn to spring was consistent with that of biomass burning of rice straw, whereas that in summer was considered to reflect mainly the formation of secondary organic aerosols from biogenic volatile organic compounds (VOCs). The heaviest δ13CWSOC (-21.3±1.9 ‰) was observed from February to April 2019, which may be explained by long-range transport of C4 plant burning such as corn from overseas. Thus, the present study indicates that δ13CWSOC is potentially useful for elucidating the sources and atmospheric processes that contribute to seasonal variations of WSOC concentration.


Sign in / Sign up

Export Citation Format

Share Document