scholarly journals Rapid data annotation for sand-like granular instance segmentation using mask-RCNN

2022 ◽  
Vol 133 ◽  
pp. 103994
Author(s):  
Zhiyong Zhang ◽  
Xiaolei Yin ◽  
Zhiyuan Yan
2021 ◽  
Vol 3 ◽  
Author(s):  
Shrinidhi Adke ◽  
Karl Haro von Mogel ◽  
Yu Jiang ◽  
Changying Li

The Genetically Modified (GMO) Corn Experiment was performed to test the hypothesis that wild animals prefer Non-GMO corn and avoid eating GMO corn, which resulted in the collection of complex image data of consumed corn ears. This study develops a deep learning-based image processing pipeline that aims to estimate the consumption of corn by identifying corn and its bare cob from these images, which will aid in testing the hypothesis in the GMO Corn Experiment. Ablation uses mask regional convolutional neural network (Mask R-CNN) for instance segmentation. Based on image data annotation, two approaches for segmentation were discussed: identifying whole corn ears and bare cob parts with and without corn kernels. The Mask R-CNN model was trained for both approaches and segmentation results were compared. Out of the two, the latter approach, i.e., without the kernel, was chosen to estimate the corn consumption because of its superior segmentation performance and estimation accuracy. Ablation experiments were performed with the latter approach to obtain the best model with the available data. The estimation results of these models were included and compared with manually labeled test data with R2 = 0.99 which showed that use of the Mask R-CNN model to estimate corn consumption provides highly accurate results, thus, allowing it to be used further on all collected data and help test the hypothesis of the GMO Corn Experiment. These approaches may also be applied to other plant phenotyping tasks (e.g., yield estimation and plant stress quantification) that require instance segmentation.


2019 ◽  
Author(s):  
Yosuke Toda ◽  
Fumio Okura ◽  
Jun Ito ◽  
Satoshi Okada ◽  
Toshinori Kinoshita ◽  
...  

Incorporating deep learning in the image analysis pipeline has opened the possibility of introducing precision phenotyping in the field of agriculture. However, to train the neural network, a sufficient amount of training data must be prepared, which requires a time-consuming manual data annotation process that often becomes the limiting step. Here, we show that an instance segmentation neural network (Mask R-CNN) aimed to phenotype the barley seed morphology of various cultivars, can be sufficiently trained purely by a synthetically generated dataset. Our attempt is based on the concept of domain randomization, where a large amount of image is generated by randomly orienting the seed object to a virtual canvas. After training with such a dataset, performance based on recall and the average Precision of the real-world test dataset achieved 96% and 95%, respectively. Applying our pipeline enables extraction of morphological parameters at a large scale, enabling precise characterization of the natural variation of barley from a multivariate perspective. Importantly, we show that our approach is effective not only for barley seeds but also for various crops including rice, lettuce, oat, and wheat, and thus supporting the fact that the performance benefits of this technique is generic. We propose that constructing and utilizing such synthetic data can be a powerful method to alleviate human labor costs needed to prepare the training dataset for deep learning in the agricultural domain.


2006 ◽  
Author(s):  
Christopher Schreiner ◽  
Kari Torkkola ◽  
Mike Gardner ◽  
Keshu Zhang

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
S Bertrand ◽  
Y Guitton ◽  
O Grovel ◽  
C Roullier
Keyword(s):  

2021 ◽  
pp. 104129
Author(s):  
Jingang Tan ◽  
Kangru Wang ◽  
Lili Chen ◽  
Guanghui Zhang ◽  
Jiamao Li ◽  
...  

GigaScience ◽  
2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Teng Miao ◽  
Weiliang Wen ◽  
Yinglun Li ◽  
Sheng Wu ◽  
Chao Zhu ◽  
...  

Abstract Background The 3D point cloud is the most direct and effective data form for studying plant structure and morphology. In point cloud studies, the point cloud segmentation of individual plants to organs directly determines the accuracy of organ-level phenotype estimation and the reliability of the 3D plant reconstruction. However, highly accurate, automatic, and robust point cloud segmentation approaches for plants are unavailable. Thus, the high-throughput segmentation of many shoots is challenging. Although deep learning can feasibly solve this issue, software tools for 3D point cloud annotation to construct the training dataset are lacking. Results We propose a top-to-down point cloud segmentation algorithm using optimal transportation distance for maize shoots. We apply our point cloud annotation toolkit for maize shoots, Label3DMaize, to achieve semi-automatic point cloud segmentation and annotation of maize shoots at different growth stages, through a series of operations, including stem segmentation, coarse segmentation, fine segmentation, and sample-based segmentation. The toolkit takes ∼4–10 minutes to segment a maize shoot and consumes 10–20% of the total time if only coarse segmentation is required. Fine segmentation is more detailed than coarse segmentation, especially at the organ connection regions. The accuracy of coarse segmentation can reach 97.2% that of fine segmentation. Conclusion Label3DMaize integrates point cloud segmentation algorithms and manual interactive operations, realizing semi-automatic point cloud segmentation of maize shoots at different growth stages. The toolkit provides a practical data annotation tool for further online segmentation research based on deep learning and is expected to promote automatic point cloud processing of various plants.


Sign in / Sign up

Export Citation Format

Share Document