Rapid pavement aggregate gradation estimation based on 3D data using a multi-feature fusion network

2021 ◽  
pp. 104050
Author(s):  
Zihang Weng ◽  
Gulnigar Ablat ◽  
Difei Wu ◽  
Chenglong Liu ◽  
Feng Li ◽  
...  
Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 308 ◽  
Author(s):  
Kai Wang ◽  
Xi Zhao ◽  
Wanshun Gao ◽  
Jianhua Zou

Facial landmarking locates the key facial feature points on facial data, which provides not only information on semantic facial structures, but also prior knowledge for other kinds of facial analysis. However, most of the existing works still focus on the 2D facial image which may suffer from lighting condition variations. In order to address this limitation, this paper presents a coarse-to-fine approach to accurately and automatically locate the facial landmarks by using deep feature fusion on 3D facial geometry data. Specifically, the 3D data is converted to 2D attribute maps firstly. Then, the global estimation network is trained to predict facial landmarks roughly by feeding the fused CNN (Convolutional Neural Network) features extracted from facial attribute maps. After that, input the local fused CNN features extracted from the local patch around each landmark estimated previously, and other local models are trained separately to refine the locations. Tested on the Bosphorus and BU-3DFE datasets, the experimental results demonstrated effectiveness and accuracy of the proposed method for locating facial landmarks. Compared with existed methods, our results have achieved state-of-the-art performance.


Author(s):  
Douglas L. Dorset

The quantitative use of electron diffraction intensity data for the determination of crystal structures represents the pioneering achievement in the electron crystallography of organic molecules, an effort largely begun by B. K. Vainshtein and his co-workers. However, despite numerous representative structure analyses yielding results consistent with X-ray determination, this entire effort was viewed with considerable mistrust by many crystallographers. This was no doubt due to the rather high crystallographic R-factors reported for some structures and, more importantly, the failure to convince many skeptics that the measured intensity data were adequate for ab initio structure determinations.We have recently demonstrated the utility of these data sets for structure analyses by direct phase determination based on the probabilistic estimate of three- and four-phase structure invariant sums. Examples include the structure of diketopiperazine using Vainshtein's 3D data, a similar 3D analysis of the room temperature structure of thiourea, and a zonal determination of the urea structure, the latter also based on data collected by the Moscow group.


2003 ◽  
Vol 42 (05) ◽  
pp. 215-219
Author(s):  
G. Platsch ◽  
A. Schwarz ◽  
K. Schmiedehausen ◽  
B. Tomandl ◽  
W. Huk ◽  
...  

Summary: Aim: Although the fusion of images from different modalities may improve diagnostic accuracy, it is rarely used in clinical routine work due to logistic problems. Therefore we evaluated performance and time needed for fusing MRI and SPECT images using a semiautomated dedicated software. Patients, material and Method: In 32 patients regional cerebral blood flow was measured using 99mTc ethylcystein dimer (ECD) and the three-headed SPECT camera MultiSPECT 3. MRI scans of the brain were performed using either a 0,2 T Open or a 1,5 T Sonata. Twelve of the MRI data sets were acquired using a 3D-T1w MPRAGE sequence, 20 with a 2D acquisition technique and different echo sequences. Image fusion was performed on a Syngo workstation using an entropy minimizing algorithm by an experienced user of the software. The fusion results were classified. We measured the time needed for the automated fusion procedure and in case of need that for manual realignment after automated, but insufficient fusion. Results: The mean time of the automated fusion procedure was 123 s. It was for the 2D significantly shorter than for the 3D MRI datasets. For four of the 2D data sets and two of the 3D data sets an optimal fit was reached using the automated approach. The remaining 26 data sets required manual correction. The sum of the time required for automated fusion and that needed for manual correction averaged 320 s (50-886 s). Conclusion: The fusion of 3D MRI data sets lasted significantly longer than that of the 2D MRI data. The automated fusion tool delivered in 20% an optimal fit, in 80% manual correction was necessary. Nevertheless, each of the 32 SPECT data sets could be merged in less than 15 min with the corresponding MRI data, which seems acceptable for clinical routine use.


2015 ◽  
Vol 10 (6) ◽  
pp. 558 ◽  
Author(s):  
Kristian Sestak ◽  
Zdenek Havlice

2019 ◽  
Vol 63 (5) ◽  
pp. 50402-1-50402-9 ◽  
Author(s):  
Ing-Jr Ding ◽  
Chong-Min Ruan

Abstract The acoustic-based automatic speech recognition (ASR) technique has been a matured technique and widely seen to be used in numerous applications. However, acoustic-based ASR will not maintain a standard performance for the disabled group with an abnormal face, that is atypical eye or mouth geometrical characteristics. For governing this problem, this article develops a three-dimensional (3D) sensor lip image based pronunciation recognition system where the 3D sensor is efficiently used to acquire the action variations of the lip shapes of the pronunciation action from a speaker. In this work, two different types of 3D lip features for pronunciation recognition are presented, 3D-(x, y, z) coordinate lip feature and 3D geometry lip feature parameters. For the 3D-(x, y, z) coordinate lip feature design, 18 location points, each of which has 3D-sized coordinates, around the outer and inner lips are properly defined. In the design of 3D geometry lip features, eight types of features considering the geometrical space characteristics of the inner lip are developed. In addition, feature fusion to combine both 3D-(x, y, z) coordinate and 3D geometry lip features is further considered. The presented 3D sensor lip image based feature evaluated the performance and effectiveness using the principal component analysis based classification calculation approach. Experimental results on pronunciation recognition of two different datasets, Mandarin syllables and Mandarin phrases, demonstrate the competitive performance of the presented 3D sensor lip image based pronunciation recognition system.


Sign in / Sign up

Export Citation Format

Share Document