New IIR filter-based adaptive algorithm in active noise control applications: Commutation error-introduced LMS algorithm and associated convergence assessment by a deterministic approach

Automatica ◽  
2008 ◽  
Vol 44 (11) ◽  
pp. 2916-2922 ◽  
Author(s):  
Jong-Yih Lin ◽  
Ching-Wen Liao
2012 ◽  
Vol 457-458 ◽  
pp. 196-201
Author(s):  
Wei Jiang

Adaptive active noise control based on least mean square (LMS) algorithm is a linear adaptive filter so that it cannot obtain desired noise reduction. Quantum algorithm is combined with noise control to form quantum adaptive controller. Quantum adaptive algorithm is discussed completely and noise control system is simulated in order to analyze the effects of noise control.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhang Yulin ◽  
Zhao Xiuyang

To address the limitation of conventional adaptive algorithm used for active noise control (ANC) system, this paper proposed and studied two adaptive algorithms based on Wavelet. The twos are applied to a noise control system including magnetorheological elastomers (MRE), which is a smart viscoelastic material characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Simulation results reveal that the Decomposition LMS algorithm (D-LMS) and Decomposition and Reconstruction LMS algorithm (DR-LMS) based on Wavelet can significantly improve the noise reduction performance of MRE control system compared with traditional LMS algorithm.


2020 ◽  
Vol 11 (1) ◽  
pp. 344
Author(s):  
Pedro Ramos Lorente ◽  
Raúl Martín Ferrer ◽  
Fernando Arranz Martínez ◽  
Guillermo Palacios-Navarro

In the field of active noise control (ANC), a popular method is the modified filtered-x LMS algorithm. However, it has two drawbacks: its computational complexity higher than that of the conventional FxLMS, and its convergence rate that could still be improved. Therefore, we propose an adaptive strategy which aims at speeding up the convergence rate of an ANC system dealing with periodic disturbances. This algorithm consists in combining the organization of the filter weights in a hierarchy of subfilters of shorter length and their sequential partial updates (PU). Our contribution is threefold: (1) we provide the theoretical basis of the existence of a frequency-dependent parameter, called gain in step-size. (2) The theoretical upper bound of the step-size is compared with the limit obtained from simulations. (3) Additional experiments show that this strategy results in a fast algorithm with a computational complexity close to that of the conventional FxLMS.


2021 ◽  
Vol 69 (2) ◽  
pp. 136-145
Author(s):  
S. Roopa ◽  
S.V. Narasimhan

A stable feedback active noise control (FBANC) system with an improved performance in a broadband disturbance environment is proposed in this article. This is achieved by using a Steiglitz-McBride adaptive notch filter (SM-ANF) and robust secondary path identification (SPI) both based on variable step size Griffiths least mean square (LMS) algorithm. The broadband disturbance severely affects not only FBANC input synthesized but also the SPI.TheSM-ANFestimated signal has narrowband component that is utilized for the FBANC input synthesis. Further, the SM-ANF error has broadband component utilized to get the desired signal for SPI. The use of variable step size Griffiths gradient LMS algorithm for SPI enables the removal of broadband disturbance and non-stationary disturbance from the available desired signal for better SPI. For a narrowband noise field, the proposed FBANC improves the convergence rate significantly (20 times) and the noise reduction from 10 dB to 15 dB (50%improvement) over the conventional FBANC (without SM-ANF and variable step size Griffiths LMS adaptation for SPI).


Sign in / Sign up

Export Citation Format

Share Document