scholarly journals Quantifying bond distortions in transient enzyme species by a combination of density functional theory calculations and time-resolved infrared difference spectroscopy. Implications for the mechanism of dephosphorylation of the sarcoplasmic reticulum Ca2+-ATPase (SERCA1a)

2015 ◽  
Vol 1847 (10) ◽  
pp. 1036-1043 ◽  
Author(s):  
Andreas Barth
RSC Advances ◽  
2021 ◽  
Author(s):  
Guanzhao Wen ◽  
Xianshao Zou ◽  
Rong Hu ◽  
Jun Peng ◽  
Zhifeng Chen ◽  
...  

Ground- and excited-states properties of N2200 have been studied by steady-state and time-resolved spectroscopies as well as time-dependent density functional theory calculations.


2018 ◽  
Vol 5 (7) ◽  
pp. 172399 ◽  
Author(s):  
Luca Gabrielli ◽  
Davide Origgi ◽  
Giuseppe Zampella ◽  
Luca Bertini ◽  
Simone Bonetti ◽  
...  

Carminic acid, a natural hydrophilic dye extensively used in the food and cosmetic industries, is converted in hydrophobic dyes by acetylation or pivaloylation. These derivatives are successfully used as biocolourants for rubber objects. In this paper, spectroscopic properties of the carminic acid derivatives in dimethyl sulfoxide and in polybutylacrylate are studied by means of photoluminescence and time-resolved photoluminescence decays, revealing a hypsochromic effect due to the presence of bulky substituents as the acetyl or pivaloyl groups. Molecular mechanics and density functional theory calculations confirm the disruption of planarity between the sugar ring and the anthraquinoid system determined by the esterification.


2010 ◽  
Vol 14 (08) ◽  
pp. 689-700 ◽  
Author(s):  
Giampaolo Ricciardi ◽  
Alexandra V. Soldatova ◽  
Angela Rosa

The photo-deactivation mechanism of the MNc(OBu)8 (M = Co, Ni, Cu) series of complexes is reviewed, with special emphasis on the role played by the central metal. Ultra-fast transient absorption experiments and Density Functional Theory and time-dependent Density Functional Theory calculations consistently show that the central metal modifies the photo-deactivation mechanism of the investigated complexes by inducing substantial changes in the nature and energy of the excited states lying between the photo-generated state and the ground state.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1525-1531 ◽  
Author(s):  
Wojciech Grochala

The enthalpy of four polymorphs of CaN has been scrutinized at 0 and 100 GPa using density functional theory calculations. It is shown that structures of diamagnetic calcium diazenide (Ca2N2) are preferred over the cubic ferromagnetic polymorph (CaN) postulated before, both at 0 and 100 GPa.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chih-Chuen Lin ◽  
Phani Motamarri ◽  
Vikram Gavini

AbstractWe present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.


Sign in / Sign up

Export Citation Format

Share Document