Structural characterization of human liver heparan sulfate

2005 ◽  
Vol 1721 (1-3) ◽  
pp. 1-8 ◽  
Author(s):  
Preeyanat Vongchan ◽  
Mohamad Warda ◽  
Hidenao Toyoda ◽  
Toshihiko Toida ◽  
Rory M. Marks ◽  
...  
Biochemistry ◽  
2018 ◽  
Vol 57 (15) ◽  
pp. 2189-2199 ◽  
Author(s):  
Qi Gao ◽  
Jeong-Yeh Yang ◽  
Kelley W. Moremen ◽  
John G. Flanagan ◽  
James H. Prestegard

2002 ◽  
Vol 277 (51) ◽  
pp. 49247-49255 ◽  
Author(s):  
Camilla Westling ◽  
Ulf Lindahl

Functional properties of heparan sulfate (HS) are generally ascribed to the sulfation pattern of the polysaccharide. However, recently reported functional implications of rareN-unsubstituted glucosamine (GlcNH2) residues in native HS prompted our structural characterization of sequences around such residues. HS preparations were cleaved with nitrous acid at eitherN-sulfated orN-unsubstituted glucosamine units followed by reduction with NaB3H4. The labeled products were characterized following complementary deamination steps. The proportion of GlcNH2units varied from 0.7–4% of total glucosamine in different HS preparations. The GlcNH2units occurred largely clustered at the polysaccharide-protein linkage region in intestinal HS, also more peripherally in aortic HS. They were preferentially located withinN-acetylated domains, or in transition sequences betweenN-acetylated andN-sulfated domains, only 20–30% of the adjacent upstream and downstream disaccharide units beingN-sulfated. The nearest downstream (toward the polysaccharide-protein linkage) hexuronic acid was invariably GlcUA, whereas the upstream neighbor could be either GlcUA or IdoUA. The highly sulfated butN-unsubstituted disaccharide unit, -IdoUA2S-GlcNH26S-, was detected in human renal and porcine intestinal HS, but not in HS from human aorta. These results are interpreted in terms of a biosynthetic mechanism, whereby GlcNH2residues are formed through regulated, incomplete action of anN-deacetylase/N-sulfotransferase enzyme.


Author(s):  
S. F. Hayes ◽  
M. D. Corwin ◽  
T. G. Schwan ◽  
D. W. Dorward ◽  
W. Burgdorfer

Characterization of Borrelia burgdorferi strains by means of negative staining EM has become an integral part of many studies related to the biology of the Lyme disease organism. However, relying solely upon negative staining to compare new isolates with prototype B31 or other borreliae is often unsatisfactory. To obtain more satisfactory results, we have relied upon a correlative approach encompassing a variety EM techniques, i.e., scanning for topographical features and cryotomy, negative staining and thin sectioning to provide a more complete structural characterization of B. burgdorferi.For characterization, isolates of B. burgdorferi were cultured in BSK II media from which they were removed by low speed centrifugation. The sedimented borrelia were carefully resuspended in stabilizing buffer so as to preserve their features for scanning and negative staining. Alternatively, others were prepared for conventional thin sectioning and for cryotomy using modified procedures. For thin sectioning, the fixative described by Ito, et al.


Sign in / Sign up

Export Citation Format

Share Document