scholarly journals pH-dependent vesicle fusion induced by the ectodomain of the human immunodeficiency virus membrane fusion protein gp41: Two kinetically distinct processes and fully-membrane-associated gp41 with predominant β sheet fusion peptide conformation

2015 ◽  
Vol 1848 (1) ◽  
pp. 289-298 ◽  
Author(s):  
Punsisi U. Ratnayake ◽  
Kelly Sackett ◽  
Matthew J. Nethercott ◽  
David P. Weliky
2000 ◽  
Vol 74 (17) ◽  
pp. 8038-8047 ◽  
Author(s):  
Tatiana Suárez ◽  
William R. Gallaher ◽  
Aitziber Agirre ◽  
Félix M. Goñi ◽  
José L. Nieva

ABSTRACT We have identified a region within the ectodomain of the fusogenic human immunodeficiency virus type 1 (HIV-1) gp41, different from the fusion peptide, that interacts strongly with membranes. This conserved sequence, which immediately precedes the transmembrane anchor, is not highly hydrophobic according to the Kyte-Doolittle hydropathy prediction algorithm, yet it shows a high tendency to partition into the membrane interface, as revealed by the Wimley-White interfacial hydrophobicity scale. We have investigated here the membrane effects induced by NH2-DKWASLWNWFNITNWLWYIK-CONH2(HIVc), the membrane interface-partitioning region at the C terminus of the gp41 ectodomain, in comparison to those caused by NH2-AVGIGALFLGFLGAAGSTMGARS-CONH2(HIVn), the fusion peptide at the N terminus of the subunit. Both HIVc and HIVn were seen to induce membrane fusion and permeabilization, although lower doses of HIVc were required for comparable effects to be detected. Experiments in which equimolar mixtures of HIVc and HIVn were used indicated that both peptides may act in a cooperative way. Peptide-membrane and peptide-peptide interactions underlying those effects were further confirmed by analyzing the changes in fluorescence of peptide Trp residues. Replacement of the first three Trp residues by Ala, known to render a defective gp41 phenotype unable to mediate both cell-cell fusion and virus entry, also abrogated the HIVc ability to induce membrane fusion or form complexes with HIVn but not its ability to associate with vesicles. Hydropathy analysis indicated that the presence of two membrane-partitioning stretches separated by a collapsible intervening sequence is a common structural motif among other viral envelope proteins. Moreover, sequences with membrane surface-residing residues preceding the transmembrane anchor appeared to be a common feature in viral fusion proteins of several virus families. According to our experimental results, such a feature might be related to their fusogenic function.


2004 ◽  
Vol 78 (6) ◽  
pp. 2808-2818 ◽  
Author(s):  
Maya Shmulevitz ◽  
Raquel F. Epand ◽  
Richard M. Epand ◽  
Roy Duncan

ABSTRACT The avian and Nelson Bay reoviruses are two of only a limited number of nonenveloped viruses capable of inducing cell-cell membrane fusion. These viruses encode the smallest known membrane fusion proteins (p10). We now show that a region of moderate hydrophobicity we call the hydrophobic patch (HP), present in the small N-terminal ectodomain of p10, shares the following characteristics with the fusion peptides of enveloped virus fusion proteins: (i) an abundance of glycine and alanine residues, (ii) a potential amphipathic secondary structure, (iii) membrane-seeking characteristics that correspond to the degree of hydrophobicity, and (iv) the ability to induce lipid mixing in a liposome fusion assay. The p10 HP is therefore predicted to provide a function in the mechanism of membrane fusion similar to those of the fusion peptides of enveloped virus fusion peptides, namely, association with and destabilization of opposing lipid bilayers. Mutational and biophysical analysis suggested that the internal fusion peptide of p10 lacks alpha-helical content and exists as a disulfide-stabilized loop structure. Similar kinked structures have been reported in the fusion peptides of several enveloped virus fusion proteins. The preservation of a predicted loop structure in the fusion peptide of this unusual nonenveloped virus membrane fusion protein supports an imperative role for a kinked fusion peptide motif in biological membrane fusion.


Sign in / Sign up

Export Citation Format

Share Document